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Abstract

The data needed for quality control in the steel casting processngldfteult to obtain. This is
especially true when referring to the surface quality of the part as itgoggemultiple inspections.
A typical inspection involves identifying the location of anomalies rmarking them for further
processing in the cleaning room. Each time an inspector views a castingaitido on the part
surface quality is conveyed. This information however, is rarditable for analysis since it is
recorded directly on the casting. A few foundries have attempted to ¢hikstirface quality data
(anomaly type, size, and location) as identified during inspection. Unfagtynidieir data format is
difficult to manage and has limited analysis opportunities. This papsemis a software program
which removes the problems associated with current attempts at detti@wol The program
provides an easy to use interface for recording anomaly type and locagictlydin a 3D CAD
model. Analysis modules designed for this data include histograms, freqplets;yarea
calculations, correlations, and principal component analysis (flaw patwgnition). A case study
for collecting and analyzing real data from a steel casting foundry wasetechpising this program.
Some sample results from this study are included in this paper to thusénaefits achieved from the

data collected.
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Chapter 1. Introduction

Manufacturing industries rely on data collection to gain understanding andlaiftitreir process.
Typically, this information is related to part quality at critiseages in its production. For the steel
casting industry, this type of data can be obtained, but is often ditficodainage. This is
particularly true when referring to the surface quality of the caasreyaluated during inspection.

Inspections identify casting surface anomalies through non-destructivatéwa (NDE) methods.
Anomalies are defined as casting features which must be mitigefere the customer will accept
the part; common types include cracks, porosity, sand inclusions, and shrideeyeanomalies are
identified, their locations are marked to advise subsequent ofgevdtere further processing
(grinding/welding) is required (Figure 1). All castings undergo iplelinspections where each time
it may be approved or marked for additional work. It is during these inspecti@ns waluable
information related to the quality of the casting is identifirdluding the size, type, and location of
anomalies. Given that the information is only recorded on the actialg,dt can rarely be used for

analysis.

Figure 1: Examples of casting surface anomalies meed for cleaning operations.

The value of this data for achieving better process control imad&dged by foundries and efforts
have been made to capture it. Recent studies show the current bgstactise is to collect
inspection details (inspector, part number, detection method) along witz¢hend location of
anomalies on a 2D part drawing. Since this data is collected on pap#ng it in an accessible
manner is difficult. Also as difficult is achieving any evaluation of anotaalstions across many

parts. While the effort made to collect the data is good, the forrddficsilt to manage and has
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limited analysis opportunities. The lack of a method for colledtiegdata in an effective format

prevents the majority of foundries from even attempting.

In 2007, lowa State University proposed a new software program for coll#unzpasting surface
data (Boonsuk, 2007). The program, titled Surface Anomaly Mapping*, provides adpdiotick’
interface for marking the anomaly type and location directly on a 3D @a&el. Additionally,

users can specify other types of information to record with regattie fpart and the inspection. All
data entered is stored in an electronic database for easy acitgssilithe foundry’s server. The
database can be readily linked to other foundry databases housing irdoromaprocess variables
related to the part. What results is a repository of data availatdmddysis. This program addresses
problems associated with past collection attempts by providing foundriesnaitageable data for

use in multiple analysis applications.

The goal of this study was the development of analysis modulesispigciesigned for use with the
software program. Each module was created to fill an immediatadm#wesisteel casting industry as
identified through interviews with foundry personnel. The modules rangegdurely visual to more

advanced statistics and provide new analysis options previously ubsvailaifficult to attain.

The analysis modules developed are as follows:
» Histograms-for describing how often each anomaly type is appearing on a particular part
» Frequency plotsfor displaying the distribution of anomaly occurrences across & sdrie
parts on the 3D CAD model
= Anomaly Area-for calculating the size of the anomaly region
= Correlations-for investigating relationships between process variables and anlowaipns

= Principal Component Analysisfor classifying parts by their surface flaw pattern

A 10 week case study at a steel casting foundry was completéal thdrsoftware program. During
this case study, real data was collected and analysis tools werd.reSiample results from the study
are provided as real examples of benefits achieved by utilizingfivease program. The benefits
from the analysis tools presented in this paper are just the begiorwhat foundries could receive

in the future.

*Software is copyright protected
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Chapter 2. Literature Review

A literature review with regards to casting surface data was ctatbwith three objectives. They
were to confirm the need for the program, to investigate automated datdionlmethods, and to
examine related work. The following paragraphs summarize the infomgathered while pursuing

each objective.

The first objective was to confirm no data collection system currexidyeel for this type of data.
After a robust review, no academic or commercial substitutes werdieln{These findings were
validated through additional interviews with Steel Founders’ Societyndrisa (SFSA) members
and foundry quality control personnel. While some foundries were collecting thishadétalata
format produced shortcomings in their analysis. Research outside theaste®) industry did
discover a comparable method for tracking defect locations. Though the @pjzroat suitable for

casting surface data, it was still closely analyzed for consteuictsight.

The automotive case study by Bala et al. (2005) presented a qualityemamgystem for tracking
the location of car door defects. The system provided users with a safiteaf@ce for recording
data and rapidly analyzing it in a visual manner. Included in their systésnthe ability to create
simple statistical outputs, such as pie charts, Pareto diagrams, and ratiocediagrams. The latter

analysis was of particular interest because it involved defectdoeati

Defect locations were recorded by selecting a cell inside an Exeeldghreet. The cell represented a
specific region of the car door defined by the 2D CAD drawing in the backgroundsiripiecity of

this method leads to several limitations regarding the data. Firslath&oes not capture the size
and shape of the defect. Second, the locations are defined in an arbitramy. fashis prevents the
data from being used in other analysis programs and applications. Theltitoo program was

designed for use in the automotive industry and has not been made commaeraikbhtea

The second objective was to evaluate whether automated inspection systerapable of rapidly
collecting casting surface data. Multiple studies by Mery (2002-2006)exarained for this
purpose. In these studies, casting defects (anomalies) were idehtifieght x-ray or camera images

captured from multiple angles. Each image was then analyzed througbf algetithms for
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classifying defect regions. The majority of this research pedamthe inspection of aluminum

wheels, in which up to 83% were inspected correctly through this system.

Another automated inspection system proposed by Prieto (2002) et al. used a 3bpdintth the
3D CAD model for identifying defects. The point cloud was created bydakiaser scanned image
of the part from all sides. These points were then mapped to the 3D CADimadmftware

program. The deviation from the point and the 3D model represented areaslié piesects.

There are many other examples of automated inspection systems, bui stediws presented here
are enough to explain why it is not a popular option in the steel casting industry. oblearpstarts
with the amount of environmental control needed to obtain an accurae ohthe casting. This
includes the orientation and surface condition of the part, as well aadigimd equipment. In the
foundry environment, this can be too difficult to achieve. This is regardiewhether the image is
captured by camera or through a 3D laser scan. Secondly, the inspe¢gomssy® not designed to
capture data. They are ideally used for pass or fail conditions anddofté classify the type of
defect, size, or location. This alone prevents it from being an optioagdiily collecting casting
surface data. As technology improves in the future, these types ahsydteuld be re-evaluated for

use in this manner.

The final objective of the literature review was to examine pastreh in which surface data was
collected. Two particular studies on visual inspection were examindkeiir approach in
identifying and recording anomaly locations. The study by Daricilar (2086560 on quantifying
the amount of variability within and between inspectors. This was achievaddyg stickers
directly on the casting where the inspector identified an anomaly. An iofidlge casting was then
taken and sticker locations were automatically identified througimgater algorithm. The results

from the study showed the overall effectiveness of the inspector awasdaB 7%.

An independent study conducted by Schorn (2006) also investigated the effestioé visual
inspection. The objective for this study was less concerned with thtwecaf defects and placed
more focus on whether the part was correctly approved or scrapped. Theagimdd with the
previous study as visual inspection effectiveness ranged from 69-90%imphes up to 30% of

parts were incorrectly inspected. The cost implications of this ine#eess encourage foundries to
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identify the variability in their own process. Focus can be centeredemiiging methods for

improving their inspection process in the form of better training, lightingegogbment.

A clean steel project conducted by Carpenter (1996) provides a thirgllexaingollecting casting
surface data. In this project, experiments were designed to determinedbssprariable(s)
impacting the total amount of dirt on the cope surface. Each experimentedvebording values
for each process variable and the size and location of dirt defec®CAD sketch. The number
of variables examined during these experiments exceeded 30, but in the end a gi@mgisgnge

resulted in the largest decrease of dirt.

The analysis performed by Daricilar, Schorn, and Carpenter would not bel@eaghout
information regarding the surface quality of the casting. The datprb&en useful in measuring the
variability in the visual inspection process and in identifying roosesiin defect formation. This

demonstrates need for a system that collects and stores cadticg siata in an efficient manner.

This literature review met all three of the intended objestivérst, it confirmed the need for the
software program presented in this paper. Second, using automated inspecéipitlp collecting
surface quality data was determined infeasible. Thirdly, researoiptsof where casting surface
data provided benefits to foundries were identified. The knowledgedydiming this research was

helpful in shaping the direction for this project.
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Chapter 3. System Architecture

The software program consists of three distinct components for conifogu@ata input, and

analysis. Configuration and data input components were created using theA&dolat 3D

platform and JavaScript programming language. The data analysis carhpaseleveloped

separately as a windows application written in VisualBasic.NETukzgegy Data can also be readily

exported to other software programs such as Excel, IMP, and Minitab talvakesge of analysis

tools already available in those commercial packages. Thedbparate components communicate

with each other through data stored in the anomaly database. Details draltiaselare included in

Appendix A. A diagram illustrating the system architecture is gexvin Table 1.

Table 1: System architecture for Surface Anomaly Mpping program.

User Class System Function System Component Data
1 Casting
e A el Configuration CAD
oa odae PDF e Models
Administrator /Configure Interface Document
Anomaly Data M :;%Eq?ldel
Operator Data Entry Collection nes
PDF h--
Document
I
]
Analysis L .
Analyst Analyze Data Application . o
Anomaly Data
Repository
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3.1 User Classes
The accessibility of each component is determined through softwarelassfication. Users are

classified agdministrators operators or analystsbased on the function they servAdministrators
are responsible for loading the 3D CAD file into the program and custaptizé data input

interface. Operatorsphysically enter the data, andalystspull historical data into analysis tools and
interpret. The following sections provide more details on the rolexbfieser class and the

components they interact with.

3.1.1 Administrators

Theadministratoruser class is responsible for two primary functions. First, to load tl@AZDfiles
into the program and second, to customize the data input interface for meetiagridry’s specific
needs. Loading models is a simple process due to the many differeotrfilgS accepted by Adobe
Acrobat 3D. All models created in major CAD packages, as well adathtransfer file formats
such as .STL or .IGES are recognized. atiministratorcan also at this time modify the model's
color, lighting, and rendering. Once a 3D CAD model is loaded into the progb@comes a unique

PDF document for easy accessibility.

Theadministrator'ssecond function is to customize the data input interface. An examplelbf a f
configured interface is shown in Figure 2. In this example, the anomalysigieesed include cracks,
dirt, sand, porosity, and shrinkage. A color is also associated to each atygradty distinguishing

its locations on the part modeAdministratorscan configure how many anomaly types to collect, the

terminology used (example: gas instead of porosity), and the coloraiesiowith it.

In addition to specifying anomaly typesjministratorsdetermine which CAD views are accessible

to theoperatorfor marking anomaly locations. This is necessary for multiple reasorss, Fir

allowing free rotation of the 3D CAD model would increase the complerdyttze computer
knowledge required by thaperator. Second, by specifying a set of CAD views, data entry is quicker
and the data collected can be analyzed in an efficient manner (See @haftee default setting is

to include the six standard CAD views (front, back, top, bottom, left, aht).rislowever more

views can easily be added or removed. Additional views could display crossakateas for
capturing interior geometry, as well as views for marking othennisecessible regions. It is

estimated that a typical casting will require 6-10 views forwapl data.
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Detection Method
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Dirt Cracks
Comments:
L | [ ] o |

Figure 2: Example of fully configured data input nterface for a specific foundry. Configurable itens include the
‘Anomaly Commands’, ‘View Commands’, ‘Part Information’, and ‘Inspection Details.’

The fields for recording part and inspection information are the dmaigurable aspect of the data
input interface. It is here wheaglministratorsspecify what part information (pattern number, mold
date, heat code, etc.) and inspection details (inspector, inspection, statection method, etc.) to
collect. The only requirement is the part information and inspectionsistake the data entry
unique. Typically, this is accomplished by including a serial number for esiieg a specific part
and an inspection number for denoting when the data was captured. Recordingetttoimsiumber
also allows greater analysis of the entire cleaning room proces@stuorce, it can identify what is
being marked the"d 3¢, and 4" time inspected. Another good practice is to record the necessary
information for linking the specific part entry to data storether foundry databases. This thereby

increases the data set available for performing analysis later.
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3.1.2 Operators

Operatorsare responsible for entering data onceaitministratorhas loaded the CAD models and
configured the work space. Users in this class require only basic corkpodedge due to the user
friendly design of the data input interface. The procedure for dataleginys by recording part
information and inspection details in the appropriate fields (Sped-R). Entering this data is
accomplished through typing or selecting items in a drop down list. ollbeving steps in the

procedure assume the operator is entering data while the casting is beauteids

After entering the required information, the next step is to mark dresma the CAD model. To
accomplish this, theperatorfirst selects the CAD view representing the side of thenzabiing
inspected. Selecting the CAD view will automatically rotate ther@ldel to the appropriate side.

The @eratorcan then pick the anomaly type to be marked from the anomaly commandist.
choosing one, theperatoris prompted to define a set of points for creating a polygon. Each point is
created by clicking anywhere on the model. Subsequent points are connectetewitbrioutlining

the region containing the anomaly. Polygons can be of any shape and size, but raimsataast

three points and have no self intersecting segments.

To aid in marking anomaliesperatorscan zoom and pan to specific areas on the model. The
distance between the last point and the mouse position is also disjplagsist theperatorin
marking the correct anomaly size. This process of selecting au@%) choosing an anomaly type,

and creating a polygon repeats for every anomaly identified by the inspector

The final step for theperatoris to click the SAVE button for populating the database with the new
data. Data transferred to the anomaly database includes all partextiorsdetails, as well as the
X, Y, zcoordinates of each point marked on the model. The associated CAD view usadkiog

each anomaly polygon is also saved to the database. The relevance of saUD thew is
explained later when frequency plots are discussed. For understandinghehafermation is

stored in the database, please reference Appendix A.

3.1.3 Analysts
Analystsare responsible for analyzing the historical data located in the andatabase. The
different analysis tools available for them to use are histogramsieiney plots, area calculations,

correlations, and principal component analysis. Data can also be eqgubiged to other software
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programs for taking advantage of other analysis applications. Duedortidexity of some of these
analysis tools, the users in this class would typically include qualitiya managers or engineering

staff. Knowledge of how to use statistical software packages (JMkhitab) is also required.

The procedure for conducting any analysis begins by determining whatdaikttria needs retrieved
from the anomaly databas@nalystsaccomplish this by defining a criterion which parts must match
in order to be included in the data set (Figure 3). This searcharritercreated by first selecting a
particular casting type (usually denoted by a casting number). At thistheiniser can choose to

run an analysis that includes all parts matching the casting type. rédlasweveranalystshave the
option to constrain the data set even more by choosing additional attthrifeest data must match.
This could include specifying a serial number, an inspection date, i@nge inspector ID. The type
and number of attributes available is dependent on hoadiménistratorconfigured the data input
interface. Only parts matching the criteria will be included in thasgat The data can be constrained
even further still by specifying a particular anomaly type for analy=is.example, if thanalystis

only interested in cracks they can ignore data regarding other angpedy t

a5/ Surface Anomaly Mapping g@
File  Datalnput  Data Analysis

Fart Information Inspection Details Anomaly Type Drata dnalyzis Tools
Casting Mo. ] Inspection Mumber Eracks : .
2133262 . Drirt Frequency Plots
Yerzion Mo, ] Inzpector [0 Sand [ o 1
Pattern Mo, Station D Shiirk Hiztogram

Rework,

[ate Code Detection Method
Serial Mumber Girid Siee (in]

[v [ Insp. Date Range _
MMNAND E44< |
MEMNAND.ERD 7
MDNAND.652 Breakdown
MOMAND B54

Mat mamimgggg lrea | Average Count
WOMLMO.BBE,
WEMLWO.BED |

Figure 3: Windows application for specifying analgis type and for defining search criteria for whatparts to include
in the data set.
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The next step after defining the data set depends on what type ofsaisabging performed.
Histograms require no additional information and the output will appddeitiee window
application. For all other modules, thralystmust specify a grid size. Aspects to consider when
selecting a grid size are saved for later discussion in Chapter @.ti@gngrid size is chosen,

frequency plots and area calculations can be conducted and outputs apyukedreior Excel.

The correlation and principal component modules require additional detaiésthese analyses are

with respect to specific locations on the CAD modghalystsdefine locations by entering the

minimum and maximum,y,zcoordinates for the region. These coordinates are obtained from the 3D
CAD model in Adobe. The CAD view related to the location must alsoteeeehin the program

(Figure 4). The output from these modules is a dataset ready for furéthgsia inside statistical

software packages such as JMP or Excel. More details on the diffgrestof analysis modules are

described fully in the next chapter.

Max Coordinate

(X2,Y¥2,72) o5l Correlations E]@
v Specify Correlation Type and Yiew Specify Location
. . Parameter vz, Location w - T
Min Coordinate
(X1,Y1, 21) Wiew Mo, A ) Point {*) Region
r—9 = #1110 ®2 10
] r ¥10 Y2 |10
@ 2110 2
s
<
P [ Run

Figure 4: Windows application for running correlations and principal component analysis. Regions amefined by
their minimum and maximum coordinates and CAD viewnumber.
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Chapter 4. Data Analysis Modules

The data analysis modules were designed to assist foundries by evalagdiicgptured with the
software program. Most require minimal human intervention and are easy poahterhe following
sections outline the approach for creating histograms, frequency plotdatiab anomaly area,
performing correlations (process and location based), as well as pricmippbnent analysis. The
analysis modules are designed to either create a data set and perfanalybis or create a data set
and export it to a statistical software program. Results then may agpa&DF, inside Excel, or
within a statistical software program (such as JMP or Minitab).infammation on how the software

collects and stores the data used for analysis, please refeteaquterC3.

4.1 Histograms
Histograms are a visual tool for describing how often an anomaly typarappea particular

casting. A histogram is comprised of a series of columns, a Vextisaor quantifying the
frequency, and a horizontal axis for identifying each bin or variable. réfadncy for each anomaly
type is calculated through a database count query and shown through the hsgiaroésponding
column. Each column is color coded to distinguish anomaly type and to matahothecheme used

in the data input interface.

The main benefit of generating histograms is the increased awarétiesseoanomaly types which

produce the majority of additional cleaning room operations. Commonly, histogrmganized to
show decreasing frequency levels from left to right. This formates afilled a Pareto chart and is
used extensively by quality departments for concentrating their effortex@mple of a histogram is

shown in Figure 5.

80 -
70 -
60 -
50 -
40 -
30 -
10 -

Number of Anomalies

Dirt Porosity Cracks Shrinkage Sand

Anomaly Type

Figure 5: Histogram showing the frequency of anonig type.
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4.2 Frequency Plots
Frequency plots are a graphical tool for displaying the distribution of @garacurrences with

respect to CAD model locations. The frequency plot appears in Adobe Acrobat3f@mss of
CAD views matching the ones used for data input. Each CAD view is mapjbea raihge of colors
for representing the frequency count at different locations. The algmincludes a scale for
guantifying the count associated to each of the five colors. An examplerfogqulet is shown in
Figure 6. From this output, users can readily identify high and low anomaligyalsyiv

distinguishing between the red and blue regions respectively.

Figure 6: Frequency plot example showing two CADiews.

As is the case with all analysis modules, frequency plots areaitgaged on data derived from a
series of parts. The parts included in the data set are at thetidisof the user (See Section 3.1.3).
The following sections provide detail on the three main operations foragmgefrequency plots. In
order, the operations are as follows: defining locations, checking loctdiraarsomaly activity

(point in polygon testing), and coloring locations based on their final anomaly count

4.2.1 Defining Locations
The first step in creating a frequency plot is producing a set of locatiaeck for anomalies. The

original approach aimed at defining these locations directly on the 3Dr#del. Unfortunately,
this proved infeasible due to limitations inside the current Adobe Acrolifdrpta As an alternative
approach, the CAD bounding box is utilized to create 2D representations ¢f@cdtians on the 3D

model.

A bounding box contains all points for a 3D CAD model, where each face represpatsfic side

or view. The primary use of bounding boxes is to rotate 3D models to individua wside CAD
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packages. Likewise, the bounding box allows users to change views during datarehis
program. The bounding box created for defining locations is identical to theeshéouslata entry.
Bounding boxes are typically axis aligned, meaning each side is parallel o6 theemajor axes.
When defining locations, points on each side of the bounding box are used to rguvigein the
associated view of the 3D model. Even though these locations are not defthedrmdel itself,

this method comes closest to achieving the original intent.

Calculating the bounding box requires the minimum and maximum coordinates of @&3BD
model. Once these are acquired, each bounding box side is defined through a combitraig®n of
coordinates. The example provided in Figure 7 shows how the front faeaisd. The next
function is to create a set of points on the six surfaces of the boundind@ daccomplish this, all
sides are partitioned into a grid of equally sized cells. The midpoint oteldaenotes a site on the
bounding box surface for representing an actual point on the 3D model (FigUieerjnal step in
defining locations is storing grid cell midpoints in a data table. Thesespstored as 2D
coordinates, are later used in a point-in-polygon algorithm for determining laow times they fall

inside an anomaly.

Max CAD Coordinates
/ (Max,,Max,Max,) Back

Max BB Side Coordinates |
&~ (Miny,Max,Max;) ! I

Left [ (@ NS
. s/ < &
) 7 M
Front BB Sidi i uas

z Bottonr /
X

Min BB Side Coordinate,
(Min,,Miny,Min,)

Min CAD Coordinate
(Miny,Miny,Min,) y

Figure 7: Steps for defining locations by utilizirg the CAD bounding box (BB). Left: Bounding box peated by
maximum and minimum coordinates of the CAD model.Middle: Bounding box sides defined from different
combinations of CAD coordinates. Right: Boundinghox side partitioned into grid for defining locations.
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4.2.2 Point-in-Polygon Test

A point-in-polygon test determines if grid cell midpoints are locatedensf anomaly regions.

Recall that anomalies are defined by polygons on the surface of the 3D CAD nibdsé polygons
are stored as a set of 3D coordinates and must be projected to theiafgpbounding box face in
order to lie in the same plane as the points (locations) being chddke provides reasoning for why
the CAD view, used when marking the polygon, is stored in the databaseuréisepslygon vertices

are projected to the correct bounding box surface.

Projecting the polygon vertices is a matter of performing an orthogonafdrenation for every
point. An orthogonal transformation removes the coordinate whose axislislpardne normal
vector of the bounding box face. For instance if the face has a norrt@l oE®, 0, 1], the
coordinate is removed. This transformation must occur for all polygorce®gtiior to use in the
point-in-polygon algorithm. If the bounding box is not axis aligned, a more complicate

transformation must occur.

The point-in-polygon algorithm selected for this study is commonly coined the “mwhbessings”
or “even/odd” method (O’'Rourke, 1998). The “even/odd” method works by counting the moimbe
time a ray, originating at the cell midpoint, crosses each line seginr@ anomaly polygon. If the
ray crosses an even number of times, the point is outside the polygon. Odd numbssiogs
signifies a point within. This method was chosen because it works gmglle polygon shapes

(concave or convex) and is calculated quickly.

Figure 8: Point-in-polygon test example. Point Arosses twice and is outside. Point B crosses o is inside.
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The logic for the test is quite simple in nature and is best deddhibmugh the visual shown in

Figure 8. In this example, the polygon lies intgglane and Points A and B are examined. The test
begins by classifying what side of the line segment the point sets @is Tone to ensure the rays,
created from the points, are crossing all line segments from theessden The importance of this can
be seen in the Figure 8 above. If Point B had no constraint on the directiomaf,tiievould

intersect line segments 2 and 4, causing the test to incorratglyocize the point as outside the
polygon. The equation shown in Figure 9 is a combination of the point coordinate wetjutiteon

for a line segment. Points generating negative values are on orné giddine, positives on the

other. By only continuing the test with points generating negative valuesyhiliecross the line

segments from the same side.

(Py-Y1) = [(Y2Y1) / (Xa-Xq)] * (Px-X1) <O
(P, Py, = coordinate of point

(X4, Y1) & (X5, Y2) = endpoints of line segment

Figure 9: Equation for ensuring rays all intersectfrom the same side of each line segment.

Points on the correct side of the line will then be tested to determhmegrifay intersects the line
segment. This is accomplished by comparingytbeordinate of the point with thecoordinates of
the line segment’s vertices. If the point lies between them, thateagécts. This test repeats for
every line segment of the polygon. The final number of intersectidghensused to classify the
point. In the given example, Point A crosses twice and is outside and PoinsBlésby crossing
only once. The set of inequalities used for checking the point with ie@ckelgment is shown in

Figure 10. Only points satisfying the equation are used in the test.

Y; <R AND P, <= Y, OR R <= Y; AND Y <P,

Figure 10: Inequality for testing whether the rayintersects the line segment. In order for the rayo intersect, the
point coordinate must satisfy these conditions.

The inequality also is designed to handle the situation when a ragatteaspolygon vertex. A
problem could occur in this situation since the ray technically crisgbdine segments sharing the
same end point. An example of this is shown in Figure 11, where theeaesetis line segments 1

and 2. The number of crossings for this point would falsely classi§ieimg inside the polygon.
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To handle this situation, the inequality only allows one of these line segtoebe counted. This
ensures the output from the test remains accurate. When a ray int@nselgigon vertex, only line
segments located below the point are tallied. The complete logic for titdrppiolygon test is

provided in Appendix B.

Y
1
RIS >
Y,
Y, 2
‘ Y,
X

Figure 11: Example where ray intersects a polygowertex. The inequality for checking intersectiongrevents both
line segments from being counted. In this casené segment 2 is counted and segment 1 is ignored.

4.2.3 Color Mapping

Color is used to identify how many times anomalies appeared atispecdtions on the part. The
color mapped to each location is determined by the final count assocititezheh grid cell
midpoint. Cell midpoints which have a final count of ‘O’ receive no color,enddll other midpoints

are painted blue, green, orange, yellow, or red.

Each of the colors represents a specific range of frequency countaitgsis determined by
subtracting the lowest frequency count from the highest and dividing theagala8y into the five
color categories. For example, if the maximum count is 60 and the minimum is H@p&acvould
include a range of 10 values. Figure 12 shows the scale created ituttisrsi Colors were chosen

to match similar outputs found in finite element analysis (FEA) alidifemation software.

10 20 30 40 50 60

Figure 12: Frequency plot color scale based on exgle values.
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The frequency plots developed here provides many benefits to foundries.lWihesl describe the
location, severity, and type of anomalies on a particular part. This infomtan be used in
multiple ways. Foundries can identify variances within their ingpeprocess. This could include
differences between operators, between stations (lighting), or equipmeat (@t mag). Secondly,
the output can be utilized for analyzing the effect of process changes.efaraple, consider the
case where a foundry wants to determine the impact of pouring termper@his type of analysis
would require two separate frequency plots. One, with a data set franpparéd at a ‘high
temperature range’ and the other from parts poured at a ‘cold tempeasatige’. The foundry could
then compare these two plots for trends in anomaly location, type, andyse\eater in this paper a

more quantitative method for measuring the effect of process parametisissed.

4.3 Anomaly Area
The size of an anomaly is an important quality measure calculatedr&quency plot results. It is

computed by counting how many grid cells are located inside an anomaly polygoffredinsicy
number is then multiplied by the grid cell size to determine the areandtance, if the grid cell is
one square inch in size, the area would equal the count (Figure 13). ak@atons are all 2D

estimates of a 3D polygon.

1in?

Figure 13: Anomaly area is based on the number @frid cells inside the polygon region. In the examp above, the
number of cells is equal to 7. Assuming the grided! size is 1 if, the anomaly area would equal 7 ih

The total anomaly area can also be calculated for a group of pardésplayed as a histogram. This
type of output is called a ‘Total Anomaly Area Breakdown’ and is usedktdify parts which have
significantly lower or higher values with respect to the averageexample of this is shown in

Figure 14. By identifying the outliers, quality personnel can focus on discovetffieiggdces in the
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processes used to make those parts. Upper and lower control limits can atgzeteplthe graph

for easier identification of parts with abnormal values.

250

200

150

100 A

Total Anomaly Area (in2)

50 A

Parts

Figure 14: Total anomaly area breakdown histogram.

4.4 Correlations
Correlations are used to quantify the strength of relationship betuféeremt variables. For this

study, three different types of correlations are shown to illugtiet@nalysis tool:
» Process Parameter vs. Anomaly Area
» Process Parameter vs. Anomaly Location

= Anomaly Location vs. Anomaly Location

The purpose of the correlation module is to generate data sets for aimalggi®ssion models. All
data sets created with the program are easily exported foa@wgalinside commercial statistical
software. The focus of the following sections will discuss how thesesdtt@re created for each

correlation type.

4.4.1 Process Parameter vs. Anomaly Area
The first correlation example attempts to identify process vagdhipacting the total anomaly area
of the part. To generate the appropriate data set, the total anoe@lyast first be calculated. The

procedure for calculating this area was discussed previouslyioisdS. Process variables being
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investigated must be pulled from existing foundry databases. A hypotheticat dasown in
Table 2. Notice each row represents a specific part with a pouringregompeand total anomaly
area value. From here, the data set is readily exported to a statiftticare program for undergoing
regression analysis. The example data set only contains one praocdse viaut additional ones
could be added for multiple regression analysis. Since there are many paraisles influencing

the quality of the part, it may be best to include more than one.

Table 2: Hypothetical data set for Process Paramet vs. Total Anomaly Area correlation.

Casting Pouring Temperature Total Anomaly Area
#100 ' 2800 ' 20
#200 2820 35
#300 2810 30
#400 2890 50
#500 2880 45

A unique aspect of this correlation is the ability to use data fnoitiple types of castings. This is
done by dividing the total anomaly area by the total surface area foaigtieg. The percentage
which results can be used for identifying process variables impgaotal anomaly area on more than
one casting type. For example, the time of year may affect the peryeaittitie mold. This could

cause more porosity to appear across all parts.

4.4.2 Process Parameter vs. Anomaly Locations

The second type of correlation aims at discovering process conditionsgcesiformation of
anomalies at specific regions on the casting. In contrast to the npgpco@aeh of the first correlation,
this type allows users to narrow in on locations of interest. This inrtareases the possibility of

discovering why certain anomalies occur at specific locations.

To conduct this analysis, users must first determine what locatpurd¢ae. This is accomplished by
creating a frequency plot for a casting of choice and examining the outpeibulput of the
frequency plot visually shows which regions have high, medium, and le#ityethrough color.

From this information, users select a location of interest. For exaifiihle user wants to determine
what causes anomalies to randomly appear, they can select a location withriedium severity.

Regions with unexplained high severity also make good candidates.
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Figure 15 shows an example of a frequency plot for a particular casting.tlisamage, locations
having different levels of severity are easily identified giBe #1 represents a location with
randomly appearing anomalies, while Region #2 is a location with high conimentaanomaly
activity.

N

Figure 15: Frequency plot output for identifying locations of interest.

A location of interest is then chosen and inputted into the software pro@ratails on how the
location is entered can be found in Section 3.1.3. The ensuing computationg¢heimneéehow
many times an anomaly was present in the particular location. Hogvdbegputations work is
discussed during the frequency plot section of this paper (4.2). The outpwenowelightly
different then frequency plots. Instead of summing the data together, detaitshandvidual part
are preserved. This includes a binary response for every point testedtmétiocation. A point
receives a ‘1’ if it falls inside an anomaly, ‘0’ otherwise. An example daw for one individual
casting is shown in Figure 16. The particular part had one anomaly in theradaisen, resulting
in two points receiving a value of “1”. In reality, the data setHisr ¢orrelation would contain many

more rows for including more parts.

Part No. (1,1) (1,2) (2,1) (2,2) (3,1) (3.2)
#200 0 0 1 0 1 0

(1. 1)
®

Figure 16: Left: Location divided into six cellswith red polygon representing an anomaly region. Kjht: Sample
data set created from this situation.
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There are two options for continuing with this data set. The first otitinléave the data in the
current format and perform a logistic regression analysis. This typelyse provides information
on the probability an anomaly will occur anywhere in the region given a chatiye process
variable. Again, this is easily calculated in a statisticalxso® program. The other option is to use
traditional linear regression models for noticing relationshipgorBehis can occur however, the

data set must be adjusted.

In order to utilize a linear regression model, the binary data is converéecbintinuous variable. If
left in the current binary format, the results from the regression maugtiwiot be accurate. Linear
regression models require data which is continuous and unbounded. Binarlesavialate both of
these conditions. A fast and efficient method for manipulating the datebframy to continuous is
to sum the values for each part. The sum of these binary variables is thiphanddy the grid cell
size for representing the total anomaly area for the region. Bdi#ew shows a sample data set
before and after the binary values are converted. This new data set moviolages the use of a

linear regression model.

Table 3: Data set with binary values summed to taf anomaly area.

Part No. 1,1 (1,2) 2,1 (2,2 (3,1) (3,2 AnomalArea
0 0 1 0 1 0 2

#200
#300 1 0 0 1 1 1 4
#400 0 0 0 0 1 0 1

4.4.3 Anomaly Location vs. Anomaly Location

Type three of the correlations investigates if a relationshipsexéween anomalies appearing at two
or more distinct locations on a casting. The procedure for selectingctiteohs involves analyzing
the frequency plot for regions with similar levels of severity. piltgram then creates a data set in
the same fashion as the previous type. Once the data set is generatedrytltatamaust be
converted to total anomaly area as before. An example data set isishbable 4.

Table 4: Hypothetical data set for Anomaly Locatio vs. Anomaly Location correlation.

Part No. Location #1 (Anomaly Area) Location #2 (Anomaly Area)
#100 14 9
#200 7 11
#300 0 17
#400 12 10
#500 0 0
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Parts are then grouped based on the presence of anomalies in the diftett@atd. These three
categories are:

= Parts with anomalies at both locations

= Parts with anomalies at one location

=  Parts with no anomalies at either location

The number of parts in each group is then used for calculating percentages pdicestages
represent the probability an anomaly will appear at one location, giveroaralgnvas found at the
other. Table 5 shows the final data set for calculating these pmyesntAccording to the data, there
is a 75% probability an anomaly will appear in both locations if it agpeame. It can also be
estimated that the anomaly appearing in the second location will be apatelyi 9.4 iA. The

purpose for doing this type of analysis is identifying anomalies whiaregshe same root cause,
making the appropriate process change, and eliminating both.

Table 5: Data set with parts categorized.

Part No. Location #1 Location #2 Both

#100 14 9 1 0 0
#200 7 11 1 0 0
#300 0 17 0 1 0
#400 12 10 1 0 0
#500 0 0 0 0 1
Total: 3 1 1

After completing this analysis, users may want to pull in process pteesed to make the casting.
This provides the data set necessary for performing a ProcesseRarasn Anomaly Location
correlation. By knowing the relationship between two separate locatiensgsult from one
correlation may identify the process variable influencing both. Theredorhange to eliminate one
anomaly from occurring may in fact eliminate two or more. The example loeddréere only looks

at two locations, but there is no limit to how many locations can be analyhedsaime procedure

can be applied.
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4.5 Principal Component Analysis
Prior to this section, the majority of analysis tools were designeddaible, simple, and efficient

measures. This section describes a more advanced applicatiablevai use with the data set.
The statistical tool described in this section is called Principal Compémalysis (PCA). Itis
commonly used for reducing multi-dimensional data sets into lower dimersicarsalysis purposes.
In other words, it is used to simplify data sets into as few variables ablpaghkile still maintaining
the data’s meaning. The intended purpose for applying PCA is to chiaeeted group parts by

their anomaly flaw pattern.

This type of application is well suited for the data set generated lpyabeam. Each casting is
characterized by a vast amount of points depending on the size. For exampstiiigiis 4’ x 4’ X
4’, the number of specific locations would approximately be 45,000 (assuming eadl $izl").

This means the data set would have 45,000 coordinates with binary resporbesdcterizing one
part flaw pattern. PCA tries to describe the same data in signifidesser amount of variables. As
was the case with correlations, the main purpose of the module is to pheséata in the
appropriate format for analysis. This data is readily exported tet&takipackages for the actual
principal component analysis. A sample data set is shown below in@ables simplified set
contains only 3 variables (locations) for 10 parts. In a real applicatiomutmiser is significantly
greater. Two principal component values were generated from this dataosethol the values are

identical for parts with identical flaw patterns.

Table 6: Data set for principal component analysis

#100 1 1 0 1.40 0.72
#200 1 1 0 1.40 0.72
#300 0 1 0 0.51 -0.99
#400 0 1 0 0.51 -0.99
#500 0 0 1 -1.91 0.26
#600 0 0 1 -1.91 0.26

In brief, PCA works by obtaining principal component values for each part datheset. A data set
with ‘n’ number of parts has the potential of creating ‘n’ number of prihcipaponents. The goal
however is to use the least number of principal components for repredéstioiginal data set. If
all possible principal components are used there is no real advantagtatd-from this program,

principal components will replace the large set of part coordinates.
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The procedure for transforming the original data into a set of prin@pgb@nent values involves
first normalizing the data set. Once the data is normalized, a covarnatdx is created.
Covariance matrices describe the relationship between all poihtsesjiect to each other. A set of
‘n’ points, results in an ‘n’ x ‘n’ matrix, where the diagonal valaee the variance for each
individual point. Eigen vectors are then calculated from this covariaratrix. These vectors are
unique, because when multiplied by the covariance matrix the direction of tbe dees not change.
In fact, the vector is either scaled up or down. The amount the vector chaegegs/en the term
eigen value. The higher the eigen value, the more variance it acamuint$ife data set. The eigen
vectors for the covariance matrix are placed inside their ownxndthe original data set is then
taken in linear combination with this matrix for determining principal compsndfor example, five

eigen vectors results in the creation of five principal components.

Principal components account for a specific percentage of the totalogsanmatine original data. The
first principal component contains the majority of variance singecitdated by combining the
original data with the eigen vector having the largest eigen valuengtance, the first value may
describe 25% of the total variance in the data set. Subsequent compooeumts far greatest
variance not correlated to previous principal components (Jolliffe, 2008 effect is cumulative.
Two component values by themselves may contain 24% and 8% respectively, but thggthe

represent 32% of the variance in the data.

Identifying parts with irregular flaw patterns or groups of parts wittilar ones is then accomplished
by sorting the data by a particular principal component. Irregular flawmpatepear in parts which
have abnormally high or low principal component values. To determine theipdidern, a
frequency plot for the specific part must be created and comparedfteghency plot for all parts.
Parts with similar types of flaw patterns will contain principal ponent values relatively close to
each other. Typically, only a few principal component values need to beesh&tydiscover these
types of trends. A good measure for knowing when to stop analyzing is when secpessipal
component values identify the same parts as being outliers. Principal compdnesicaa also be
used in correlations with process variables for identifying processtiomsdwvhich result in a
particular flaw pattern. An example of a PCA is included in the Ch&ptase study. It is
important to note that PCA was not designed for use with binary variablésgdptoven to work

remarkably well in this application.
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Chapter 5. Case Study

During the summer of 2008, a case study at Harrison Steel Casting Compatigainladiana was
completed. The goal was to implement the software program in a steel éastidgy and begin
collecting and analyzing data. Harrison Steel was selected in part babet established practice
of recording surface quality information during inspections. The productsqaodby this foundry

range from 300 to 12,500 Ibs and are made from carbon and low alloy steel.

The foundry’s quality department is in charge of collecting data dimgasurface quality as marked
by inspectors. To collect this data, operators are positioned at insp&etiions for recording
anomaly locations on a 2D drawing. Operators denote the anomaly type bypb@fstiee marking
and classify its location (interior or exterior) through color. Otadwable information such as the
serial number, inspector, and detection method are written down as wellxarple of one of these
data collection sheets is shown in Figure 17. Data is collected undercthraditions for every first
time part inspection, as needs arise, and on a continual basis for somes castidgta sheets are

filed away and kept for later reference upon request.

Figure 17: Data sheet for casting surface qualitinformation at Harrison Steel.
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5.1 Methodology
Five castings were chosen based on interest from the foundry in obtainiagsatdatr making
process improvements. These castings ranged from 2000 to 10,000 Ibs and weretunaduda two

separate production lines. The castings chosen were regularly produced.

Surface quality data was collected by transferring the informatianded on data sheets (See Figure
17) to the software program. The time involved transferring the daés var the number of
anomalies present. Each anomaly takes approximately 10 seconds to emnber imbgram.

Average anomaly size recorded was around two square inches. Examples o klavatappears

before and after being entered into the program are shown in Appendix B.

The data captured at the foundry was stored in a Microsoft Access 200&sddtadated on a single
computer. At the end of the 10 week study, over 300 parts were entered witimaimioii 30 for
each of the five castings. Analysis of this data was completed using atimnnfrom the anomaly

database and from current part databases already on the foundry’sr€L se

5.2 Results

Analysis of the data collected during the case study was conducted in teguariisnonths after
leaving the foundry. Sample results are used to illustrate the typenaeiftb foundries can achieve.
The subject matter selected for analysis was chosen by the author amd imbgns a complete list
of what could be investigated using the data. In most cases, the examplesadaygjer data set
with further analysis for making broad conclusions. Some results wereiedadiforotect the

confidentiality of the data, without altering its meaning.

5.2.1 Variation in Inspection

The first example shows how frequency plots are used to identify V@linédrmation on the
inspection process. The focus of this study was to determine if therany noticeable difference in
parts inspected by one operator compared to another. To accomplish thisejectifrequency
plots were created. One using parts inspected by Operator A, the otherrtgithyp@perator B.

Both outputs were then visually contrasted to identify differences in ap@toater locations,

frequency, and area.
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Visual comparison of the two frequency plots identified a casting region wigmdicant
discrepancy in frequency count. Operator A marked anomalies ingibe m/er 80% of the time,
while Operator B, only found anomalies 17% of the time. Figure 18 dighleaysequency plots

derived from each operator. The region of question is circled on eachfonagierence.

Operator B

83% of parts contained anomalies

17% of parts contained anomalies

in the circled region in the circled region

S P

Figure 18: Frequency plot showing casting regionantaining large discrepancy between operators.

The following steps concentrated on what may have caused this wriabilis included comparing
the process variables used to create the parts inspected by eaabr opgreen no clear trend
presented itself, investigation switched to the process used by each ojperatpection. Items
such as inspection location, inspection equipment, experience level, dnshifbwere targets for
comparison. The inspection location and equipment were identical, but@petead far greater
experience inspecting this particular casting. The question then teto®gerator B insufficiently
trained or is Operator A over inspecting. Time did not permit during the tealsets collect more
data and analyze this further. Operator measurement error was adsspeaific focus of this

project. It does however provide a powerful example of what can bfietbthrough frequency

plots.
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5.2.2 Anomaly Correlations

The next example describes how the correlation module was used to identitatibaskip between
cracks appearing at two distinct locations. Figure 19 below highlightsvb locations of interest on
this casting. These locations were selected based on their $awdis of severity.

The results from the study are also displayed in Figure 19. From thess, theul is a 60%
probability of cracks appearing in both locations. This provides motivatiogtéonine the cause for
cracks in one location with the hope it may be the reasoning for both. Theestitomgelationship
between anomalies at separate locations, the greater the likelilegyashtre the same root causation.

Both One None
29 17 2
60.4% 35.4% 4.2%

Figure 19: Left: Frequency plot with two loations of interest highlighted. Right: Results fron correlation study.

The process variables used to make the parts along with their anomdtyr aheatwo locations was
then analyzed. The analysis was capable of determining which parahaeters influence, but was
unable to identify ones having significant impact. It is likely thiea,dause of the cracks may be
related to the design of the casting. This could include anything fromdtiegisa geometry to the
gating system. Experiments would be necessary to validate this assumptid¢e thé/hiodule

provides foundries with information on potential relationships, it cannot pensation.

5.2.3 Casting Classification

The final example shows how principal component analysis (PCA) is usdddsifying parts by
their surface flaw pattern. PCA was conducted on a data set including 80fthg same casting.
To improve performance, the data set was first reduced. This was actwdiy limiting the

analysis to only one side of the casting. Points on the side which never abatzdmealies were
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also removed to further reduce the data set. Even with this reductienwdee still over 1500 points

for describing the flaw pattern for one part.

The final data set used for analysis was created by the software pargtasantained 80 rows and
1500 columns. Details on how this set is generated can be found in Section 4.&eqlibedy plot
output from all 80 parts is shown in Figure 20. From the output, the typical ftsavrpgor this
casting can be identified as regions colored in red, orange, and yejpogsarting high anomaly
frequency. Atypical flaw patterns consist of regions with lowdency count appearing blue.

Figure 20: Frequency plot output from 80 parts.

The PCA produces a set of principal component (PC) values for all 80 pagsumber of PC
values is equivalent to the number of points representing the flaw pattewevet, it is not
necessary or valuable to analyze them all. Each PC value accounteftaima percentage of
variance from the original data set. The PC values used for aredgsfsose which contain the
highest percentage level. In this example, only a handful is needed fomgythupiparts effectively.
A single PC value for a particular part contains no real meaniranlyitoecomes practical for
analysis when it is compared with others.

PC values are used as criteria for sorting the parts. The parts atlyisitited by the first PC value.
This naturally groups parts by their surface flaw pattern as thosaghkamilar PC values and
identifies outliers in the data set. These outliers are of patituerest because they represent parts

with unique patterns. Table 7 below provides a list of interesting padsqed from this initial sort.

In this case only two parts contained extreme values. Serial numbers 100 anth&3ist T

contained a unique flaw pattern and large amount of anomaly area. The second,itB&d exh
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unique flaw pattern when compared to the norm. Parts which received itB@icalues were
identified as having zero anomalies on the surface for this view. Al pé#nts had PC values
ranging from 2 to -2, with a mean value of -1.24. The majority of these padgsoted as having
common location of anomaly activity. These common locations are identite tegions on the
overall frequency plot (Figure 20) which are red. The frequency ptots Table 7 are displayed in

Figure 21 for illustrating flaw patterns.

Table 7: Results from sorting parts by the first -Z value.

~ Serial Number | PC 1 Value Comments
#100 77.88 Large Anomaly Area
#531 18.08 Unigue Flaw Pattern
#022 -0.93 No Anomalies
#200 -0.93 No Anomalies
#175 -0.93 No Anomalies
#010 -0.93 No Anomalies
#084 -1.24 Typical Flaw Pattern

(@) (b) (©)

Figure 21: Frequency plot output from parts identfied through first principal component value. Images show
outputs from # 100 (a), #531 (b), and #084 (c).

The same process of sorting is used for identifying casting flaw patiteough the second PC.
Table 8 contains the results from this sort. Again, parts with egtRfnvalues had unique patterns
and parts receiving PC values near the mean shared typical flaw paEgymse 22 displays the
frequency plots of these parts. The process of sorting by PC valueddsteppeince subsequent
values produced similar results. This shows the benefit of using PC&adnsf having over 1500
points to analyze for classifying castings, only two variables are ne@tielis a 99.87% reduction

in data.
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Table 8: Results from sorting parts by the seconBC value.

Serial Number PC 2 Value | Comments
#122 -39.29 Unique Flaw Pattern
#150 14.85 Flaw Pattern
#148 14.00 Flaw Pattern
#075 0.05 Typical Flaw Pattern

(@) (b) (c)

Figure 22: Frequency plot output from parts identfied through second principal component value. Imges show
outputs from # 122 (a), #150/148 (b), and #075 (c).

Up to this point, PCA has been used to group parts by their surface flaw patteffiocughrow
switches to identifying what process variables cause each flagvrpgtpe to occur. Recall, that the
PC value contains no real meaning for data analysis. It cannot be usaxhtiswouas variable in a
regression analysis for instance. Instead, it is best to give parésniog similar PC values a
category name. The process variables used to make the parts in egaty cate then be compared

through ANOVA methods. This would again require a much larger data set baefjoabast

conclusions are made.
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Chapter 6. Discussion

This discussion provides an opportunity to examine some of the more impontastriskated to the
study. The first discussion topic explores the impact of grid @gllsslection on analysis. Next, the
error associated with data entry during the case study is measured lgnddanginally, valuable

insight gained from implementing the program at a steel casting foundesisnped.

6.1 Selecting Grid Cell Size
Prior to employing many of the analysis modules, users must first spegifg cell size. Recall

from Section 4.2 that grid cells are used to represent specific lccatitinregards to the casting.
The size is entered as a single value which defines the length and widthceflt For example, a
cell size value of 2.00 results in a 2.00 x 2.00 cell with an area of 4.0Gameful consideration

must be made when selecting a size due the implications it has on the output.

First, grid cell size affects the capability of capturing diffesnéd anomalies for analysis. A
smaller cell increases the chances of capturing the locationatles anomalies. Figure 23 provides
an example of this. Notice when the grid cell size is large, one anonmaigsied. This is because no
grid cell midpoint is located inside the anomaly polygon. When the grid zelissdecreased
however, both anomalies can be identified. For identifying anomaly locationgjdheell size

should be closely associated to the smallest range of anomalies marked.

O O

Figure 23: Shaded cells are located inside the amaly. Left: Smaller anomaly is missed and anomalghape is

crudely defined. Right: Smaller cell size resultin both anomalies identified, plus better shape dmition.
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The size of the grid cell also affects the area estimate for an BnoRecall that area is

approximated by counting the number of cells inside an anomaly and multiplying kallthiees A
smaller cell will always come closer to the polygon’s theorkticea. Proof of this is shown through
the images provided in Figure 23. The large polygon in both images has ah@&8&irf. This is

the nominal area since it was calculated using the polygon’s dimen3ibesstimated area of the
same polygon using the large cells was 7.60r@sulting in a 1.7% approximation error. The smaller
cells estimated the area at 6i8%4and contained a 0.05% error. It appears that either cell size does a
good job of approximating the actual area of the polygon with both containindes2% error.

The use of smaller cells does again result in a better output.

Finally, the cell size determines how well the anomaly shaperssemed on the frequency plot
output. Grid cells can be compared to pixels used for images. More psudts e better
resolution. Figure 23 visually shows the effect grid cell size haélssoanomaly shape. The plot
using large cells provides a very crude representation of the polygda tiadplot using smaller
cells defines the shape quite well. To produce the best frequency plesingad cell size should be
set small.

The tradeoff when selecting a small cell size is the increase in cdiopuiae. The graph in Figure
24 shows an example of computation time vs. grid cell size. As expectedphesgows an inverse
relationship between computation time and cell size. If time is not a falgtor miNning an analysis,
cell size can be set extremely small. A larger size should be dinos&ses where the user wants a

guicker response.
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Figure 24: Graph showing computation time vs. grictell size.
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Whether a cell is small or large is all relative to the size ofdlséng. A starting point for
approximating the appropriate cell size is to make it 2% of the sinedisting dimensions. For
example, if a casting has dimensions of 60" x 48" x 36” the resulting cell sidd Wewaround 0.75"
(0.02 x 36").

6.2 Data Entry Error
A reasonable concern regarding the case study is how much error occumegdidtaientry. The

error in question is the result of transferring the data to the a@ftprogram. Types of error would
include incorrectly marking the size, shape, and type of anomaly, as wedisisgranomalies all

together.

An experiment was setup to test the error associated with data entry.tifhinekided a single
operator entering the same data sheet three times into the sys$temperFator chosen for this
experiment had previous experience entering data into the program. To t@ax\uae operator was
unaware of the test and the duplicated data sheets did not appear in seguatsntial he type of
error measured in this experiment is commonly called repeatabiiity éRepeatability error is the

result of a single operator performing the same task multiple times.

The experiment lasted approximately 50 minutes, allowing the operaoteiodata from 6 sheets, 3
of which were identical. All data sheets entered contained the sanmg castel. This was the
largest casting and featured many more anomalies when compared to otheds dtwaas chosen to
represent the worst case scenario for data entry error. The latiyg size creates more difficulty in
consistently locating small anomalies. While the greater number of desnirecreases the

likelihood one will be missed.

Repeatability error was first measured by calculating the number ofadirermarked in each entry.
Each data entry should contain 33 anomalies as recorded on the duplicated tlafBheheperator
achieved this value on two of three data entries. On the third entry, la¢oomamly recorded 32
anomalies. The operator correctly marked 98 out of 99 or 96.97% of anomdlesepEatability
error associated with marking the correct number of anomalies is 3%noftiady types were

correctly identified.
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Next, the repeatability error associate with marking the correct dnsina was measured. This
error was calculated by comparing the total anomaly area for eachrdat. The results are shown
in Figure 25. The standard deviation was 17.21 with a mean of 198 #% average variation in
total anomaly area between data entries implies some amount oatsjitgadrror. This however

may have been inflated since Entry 3 did not contain all 33 anomalies.

250

200

150

100

50

Entry 1 Entry 2 Entry 3

Figure 25: Histogram showing the total anomaly ara for each data entry.

The third aspect investigated was the repeatability error likadamaly locations. This measured
how well the operator marked anomalies in identical locations eachRmeguency plot dated was
exported to Excel for measuring this error. In Excel, cell midpointefesenting casting locations
were categorized by their frequency count (1, 2, or 3). The total number ina¢@gbrg was then
used to determine a percent match. A 100% match refers to cell midpointyedanied a
frequency count of 3, meaning they were inside an anomaly for all theerdeaes. A 67% match
refers to cell midpoints receiving a frequency count 2. Finally, a Of¢hnmregarding midpoints
inside an anomaly in only one data entry. Ideally, the test would show a 100% maith for

midpoints.

Results from this analysis are shown in Figure 26. The operator had a E26&com 37.41% of the
total midpoints. A 67% match on 27.78% of the points and a 0% match on 34.81%. This would
suggest there was a significant amount of repeatability error whéimméwcations. However, the
high percentage of midpoints with a frequency count of 1 may be tied to thasgooiated with
marking anomaly size and less with regards to marking the correcbiocdihe grid cell size also
has a large impact on the repeatability error with regards to locaitbsize. Smaller cells will be

more sensitive to minor changes in anomaly location and size between daga entrie
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B 100% Match m®67% Match ® 0% Match

Figure 26: Pie chart showing percentage of midpots and % Match.

A more important measure is how well the frequency plot compared to tieabdgta sheet. This
was evaluated in two ways. First, a visual comparison between the aimhaats was completed.
The comparison resulted in good agreement between anomaly locations. Nextmbies of

anomaly clusters in the frequency plot was counted. Anomaly clusteeseapregions on the model
where anomalies were marked multiple times during multiple dati@e(Figure 27). Preferably,
there should be one anomaly cluster for every one of the 33 anomalies. If the ofiartmenaly
clusters matches the number of anomalies, then the operator did a good jahired degm in

similar regions each time. In this test, the operator performed welebting exactly 33 clusters.

AR

Figure 27: Visual comparison between original dataheet and frequency plot. Note the number of anaaly clusters
matches the number of anomalies. For comparing thether five views, reference Appendix B.
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The result of this experiment provided two conclusions with regarddaeeday. First, it showed
that marking anomaly size and location the same way each timelengivad. This was proven by
the low 100% match and by the discrepancy between total anomaly areas. Wwayairigese results
were expected since the casting was very large and the anomaliesageavere less than Z.in

The grid cell size was also very sensitive to minor changes in positioizand s

More importantly, the study proved that data entered into the program wateaaipapresenting the
original data sheet well. This can be seen in the comparison providedite E®§ While there was
some repeatability error associated with the location and size ob&norarkings, the operator only
created 33 anomaly clusters. This means that each anomaly wad maak®milar region each

time.

6.3 Case Study Insights
This section takes a closer look at the first implementation of thegonog the industry. It will

discuss potential challenges and provide suggestions for future impétioesnin other facilities.

Key insights from case study results will also be discussed.

6.3.1 Case Study Challenges
The majority of challenges faced when using the software prograrimited due to the small scale

implementation. The software was setup on a single computer and only thateromajgccess to
the database. The only significant concern with this setup was thiehocbthe data. Storing it on a
single computer increases the likelihood of a computer failure lositigeadlata. This was prevented

by consistently backing up the data on an external hard drive.

The other challenge was determining when and where to collect the data.wEhe two options to
consider. The first option was to collect data on site at each of thetiosp&ations. This would
require setting up the computer at each location and entering data duringptbetion. There were
multiple concerns with using this method. First, since the program waleithsta a single computer
the amount of data entered would be limited. The foundry had six inspection sptiead
throughout the facility. Data could only be captured one station at a timendséuwere were
concerns with the durability of a laptop computer unprotected in the foundrpemeant. Dust,

vibration, and impact could cause complete failure of the computer.
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The second option was to bring the data to the computer in the form of data shests sieets were
the current method for collecting surface quality data by the foundry. gléuttperators were trained
to collect information in this way at many inspection stations simultaheothis option was chosen
over the previous since more data could be entered and the computer wasgrdtetmes not
represent the best method for a full implementation of the program. éf coamputers were available
and could be protected inside the foundry, data would have been collected omt&tengEhe data
on paper and then transferring it to the software program creates noaddédewaste. It also

increases the likelihood for error.

6.3.2 Suggestions for Full Scale Implementation
The lessons learned during this small scale implementation can be apglifdl scale

implementation in the future. A full scale implementation would reque@emputer at each
inspection station with networking capability. The computers would also neetkatjme case for
lasting in the foundry environment. A server for storing the data tedléside the program would

also be required.

Training for operators entering the data is also necessary. This wasjmioéd during the case study
since the data was entered by the author. Basic computer knowledgbasialhecessary for using

this program. Therefore, the training should be minimal.

While it would be preferred to collect data on every part produced, that feasible in the majority
of foundries. Castings with good quality records (based on customer com@amik) have data
collected on an audit basis. This will provide data for analysis if thomgechanges with regards to
the casting’s quality. The amount of data collected on other castings shdasedokon the quality
problems they are experiencing. If a casting is causing lots of problemsgatarghould be
collected. It is also recommended that data be collected on the same pgrtmitiple inspections.
This will provide data for foundries to use when analyzing their cleanimm process. They can
identify what anomalies are marked on théa2 3% inspection, as well as how much rework is

occurring in their system.

6.3.3 Implication of Results
The results from the case study are very reflective of the foundrgmrthdtarrison Steel is one of the

top foundries in the industry for data collection and process control. DHegt@ significant

amount of data on every casting produced that is used for problem solving thraucgusadion.
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Providing them with a software program for collecting and storing tlaitacof anomalies just adds
to their impressive data set available for analysis. Harrig@ssdedication to quality prevented the

software program from identifying quick fixes to their process.

Analysis of this data set did produce some very interesting resufts.iFshowed there was a
significant amount of variation between two operators inspecting the casting. Secondly, it
suggested cracks appearing at two locations on the casting weed.rélairdly, PCA was proven
effective at grouping castings by their surface flaw pattern. Unfodlynai broad conclusions

could be made. This was true for other analyses not presented in this paper

There are many reasons for why conclusions could not be made at this timacKToied sufficient
data set on anomaly locations was the first reason. Collecting data on oniys5fopa not provide
a very large set for analysis. It does supply enough data for creatingi@éegaency plots, but not
enough for identifying strong relationships in correlations. Secondly, weamg time to analyze
the data, no resources were readily available at the foundry for congdexpieriments. Experiments

would be necessary in many cases for validating the relationshipsigtkdtifing analysis.

Casting quality issues take a significant amount of data and time tdydeti causation.
Sometimes it requires data not currently collected. Even with good dagetioniimethods and
process control it may still take weeks or months to make any broad concluBi@gme to pick a
single casting and fully analyze it using the software program was naldeailside this particular
case study. Instead, data was collected on a variety of castingsdinailhg the types of analysis

possible from the new software program.
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Chapter 7. Conclusions

The software program presented here, along with the new set of amadiiles, provides foundries
with a much needed tool for controlling their manufacturing process. Procassepers effect on
anomaly type, location, and severity can all be calculated. Relationshigehevariables can now
be quantified and used for making appropriate design changes to improvearitigliality.
Foundries can also gain a greater understanding into their inspectioasprdtes includes

identifying variance between inspectors, equipment, and inspectioiotscat

The development of new analysis tools provides motivation for caiteitton more parts and during
multiple stages in the cleaning room process. This promotes a morévereagroach to
investigating and eliminating surface quality problems. Collectingrimdtion prior to a new
anomaly occurring also helps with route cause analysis, which may not be dditlemvise. For
example, comparisons can be made to see the effects of the season, pourirgusempattern
number and many other process parameters. The data is also valuaaleléting and improving

defect simulation software.

Not only will this software program benefit foundries but their custerasiwell. Foundries can
provide customers with information on where the part was welded (weld,moeges} locations, and
other details. By supplying management with a new tool for collecting angzangpinspection data,
better insight can be gained into the entire steel casting processsikZz&ceework loops” can be

analyzed and the true production cost of a casting can be estimaggd bett

The steel casting industry was the focus for this project; howeaesapplication of the software
program is not limited to this industry. Any industry interested in improvingtgtlarough tracking
surface quality data will benefit from the program. The data inpufasteand analysis modules are

capable of collecting and analyzing data related to all types of parts.
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Chapter 8. Future Work

Future work on this project will focus on two areas of the software progfde first focus will be
on the data input interface. This could include modifying the interface dmsdib increase the speed
of data collection. Potential work may also involve investigating aattesndata collection methods

to reduce the amount human interaction and data entry error.

The second focus is on the development of new data analysis tools and imprewamteetcurrent
set. The current set of analysis tools are forced to convert thet@Dallected into other formats
due to limitations inside Adobe. If these limitations were removed, the entgks could be
modified to directly use the 3D data. The analysis modules consideredli@ frogram versions

include:

» Gage R&R: The Gage R&R module would provide foundries with the ability to quantify the
performance of their inspection process. It would contain an easy to utgcmfer setting up

Gage R&R experiments and calculating the variation.

= Weld Maps: Creating weld maps for a customer is currently available withrtbgragaom, but has
not been integrated yet. Weld maps describe the location on the part whiéng weturred.
Many customers are beginning to require them and this program would provide mejtead

for meeting the customer’s request.

= Cost Calculations: The cost calculation module would take the anomaly area and multiply it by a

“dollar per inch” rule. This “dollar per inch” rule is the cost assedidior cleaning a particular
type of anomaly of a certain size. Other information such as the amount afiwettbuld also
be stored to connect the anomaly type/size to operation cost. Thisnscastenetric for

management to use in determining project priority and process changg. resul
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Appendix B. Data Entry Examples
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Figure 1: Data collection sheet for casting at Haison Steel Casting Company.
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Figure 2: Frequency plot showing casting surfaceata transferred from data collection sheet shown ifrigure 1.
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Figure 4: Frequency plot output from data entry stdy. Frequency plot comprised of the three duplica data sheets.
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Appendix C. VB.NET Code

VB. NET Code for Hi stogram Qut put

Private Sub Hi stogram ()
Dim CastingNo As String

Dim VersionNo As String

Dim i As Integer

Dim Histo As String

Dim Value As DataTable
Dim Value2 As Integer

CastingNo = Form1.txtCastingNo.Text
VersionNo = Form1.txtVersionNo.Text

Chart.ColumnCount =7
Chart.RowCount = 1

Fori=1To7

Chart.Column =i
Chart.Row =1
Chart.RowLabel = "Anomaly Type"
Ifi =2 Then

Chart.ColumnLabel = "Dirt"
End if
Ifi =3 Then

Chart.ColumnLabel = "Sand"
End If
Ifi=4 Then

Chart.ColumnLabel = "Gas"
End If
Ifi =5 Then

Chart.ColumnLabel = "Shrink"
End If
Ifi =6 Then

Chart.ColumnLabel = "Rework"
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End If

Ifi=7 Then
Chart.ColumnLabel = "Cracks"

End If

Histo = "Select Count(AnomalyNo)As cValue From Anom
CastingNo="" & CastingNo & " And VersionNo="" & Ve
" And Type=""& i &""
Value = aDB.Query(Histo)
Value2 = Value.Rows(0)("cValue")
Chart.Data = Value2
Next i

Form2.Show()

End Sub

aly Where
rsionNo &
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VB. NET Code for Frequency Pl ot Cal cul ati ons

Public Sub Run()
‘Program functions by evaluating each view of the ¢ asting separately.

For View=1To 6
Call CreateGrid()
Call PointPop()
If Serial.Rows.Count = 0 Then

MessageBox.Show("No parts match the search criteria ",
"Error", MessageBoxButtons.OK, MessageBoxIcon.Excla mation)

Exit Sub
Else
Call Store()

End If
Next View
End Sub
Public Sub CreateGid()
‘Create grid on bounding box surface’
Dim rows As Integer
Dim columns As Integer
Dim BB As DataTable
Dim nRow As DataRow

Dim BBQuery As String

Grid = New DataTable("Grid Midpoints")

Grid.Columns.Add("X", Type.GetType("System. Double™))
Grid.Columns.Add("Y", Type.GetType("System. Double™))
Grid.Columns.Add("Z", Type.GetType("System. Double™))
Grid.Columns.Add("Output”, Type.GetType("Sy stem.Double"))
Grid.Columns.Add("R", Type.GetType('System. Double™))
Grid.Columns.Add("G", Type.GetType('System. Double™))
Grid.Columns.Add("B", Type.GetType("System. Double™))
Grid.Columns.Add("ViewNo", Type.GetType("Sy stem.Double"))
BBQuery = "Select MaxX,MaxY,MaxZ,MinX,MinY,MinZ Fro m BoundingBox
Where " & "CastingNo="' & CastingNo & " And Versio nNo="' &
VersionNo &™"

BB = aDB.Query(BBQuery)

If BB.Rows.Count = 0 Then
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Exit Sub
End If
"The bounding box is partitioned into a grid based on what view you want.
If View = 1 Or View = 2 Then

Dim Width As Double = Abs(BB.Rows(0)("MaxX") - BB .Rows(0)("MinX"))
Dim Height As Double = Abs(BB.Rows(0)("MaxZ")- BB .Rows(0)("MinzZ"))

rows = Height / GridSize
columns = Width / GridSize

Forj=0Torows-1

Fori=0To columns - 1

x1 = BB.Rows(0)("MinX") + (i* ( Width / columns))

x2 = BB.Rows(0)("MinX") + ((i + 1)* (Width / columns))
z1 = BB.Rows(0)("MinZ") + (j * (Height / rows))

z2 = BB.Rows(0)("MinZ") + ((j + 1) * (Height / rows))
Dim midpointX As Double = ((x2 -x1)/2)+x1

Dim midpointZ As Double = ((z2 -21)/2)+z1

nRow = Grid.NewRow
nRow("X") = midpointX

If View = 1 Then

nRow("Y") = BB.Rows(0)("Min Y")
Else

nRow("Y") = BB.Rows(0)("Max Y")
End If

nRow("Z") = midpointZ
nRow("ViewNo") = View
Grid.Rows.Add(nRow)
Next i
Next j

End If

End Sub
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‘Similar code is used for views 3-6

Private Sub Poi nt Pop()

SerialQuery = "Select Distinct SerialNo From Inspec
& CastingNo & " And VersionNo="" & VersionNo & "A

InspectionNo & "
Serial = aDB.Query(SerialQuery)
If Serial.Rows.Count = 0 Then
Exit Sub
End If
'For loop which cycles through each serial number i
For s = 0 To Serial.Rows.Count - 1
QueryMax = "Select * From Anomaly Where CastingNo="

" And VersionNo="" & VersionNo & " And " & "Inspe
InspectionNo & " And SerialNo="" & Serial.Rows(s)("

And ViewNo=" & View

'Stores max anomaly number for specific serial numb
MaxAnomaly = aDB.Query(QueryMax)

If MaxAnomaly.Rows.Count > 0 Then

For k = 0 To MaxAnomaly.Rows.Count - 1

tion Where CastingNo="
nd InspectionNo=" &

n the data table

" & CastingNo &
ctionNo=" &
SerialNo") & "

er into datatable

PointQuery = "Select Point.X,Point.Y,Point.Z " & " From Point
" & " Where CastingNo="" & CastingNo & " And Versi onNo="" &
VersionNo & " And AnomalyNo=" MaxAnomaly.Rows(k)(" AnomalyNo")

& " And " & " InspectionNo=" & InspectionNo & " And

SerialNo="" & Serial.Rows(s)("SerialN0") & ""

PolyPts = aDB.Query(PointQuery)
If View = 1 Or View = 2 Then
For j =0 To Grid.Rows.Coun
value = False
Fori=0 To PolyPts.Ro

x1 = PolyPts.Rows(0
z1 = PolyPts.Rows(0

ws.Count - 1

+i)(X")
+i)(Z)
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If i < PolyPts.Rows .Count -1 Then
x2 = PolyPts.Ro ws(i + 1)("X")
z2 = PolyPts.Ro ws(i + 1)("Z")

Else
x2 = PolyPts.Ro ws(0)("X")
z2 = PolyPts.Ro ws(0)("Z")

End If

If (z1 < Grid.Rows(0 + j)("Z") And
Grid.Rows(0 + j)("Z") <= z2) Or

(Grid.Rows(0 + j)("Z") <= z1 And z2 <
/ Grid.Rows(0 + j)("Z")) Then
\ If ((Grid.Rows(0 + j)("X") - x1) -
(Grid.Rows(0 + j)("Z") - z1) * ((x2 -

x1) / (z2 - z1)) < 0) Then

(O’Rourke,1998)

value = Not val ue

End If
End If
Next i
If value = True Then
cell = Grid.Rows(j) ("Output™)
cel2=cell +1
Grid.Rows(j)("Outpu t") = cell2
End If
Next j
End If
Next k
End If
Next s
End Sub

‘Similar code is used for views 3-6
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Private Sub Store()
Dim Insert As String
Fori=0 To Grid.Rows.Count - 1
If Grid.Rows(i)("Output") > 0 Then
Insert = "Insert INTO Grid(X,Y,Z,Freq,ViewNo)Values
Grid.Rows(i)("X") & ", " & Grid.Rows(i)("Y") &","
Grid.Rows(i)("Z") & "," & Grid.Rows(i)("Output”) &
Grid.Rows(i)("ViewNo") & ")"
aDB.Insert(Insert)
End If
Next i

End Sub

Public Sub Col or ()
Dim MaxOutput As DataTable

MaxOutput = aDB.Query("Select Max(Freq)As cMax, Min
Grid")

aDB.Update("Update Grid Set R = 0,G=0,B=1 Where Fre
MaxOutput.Rows(0)("cMin") & " And Freg<" & 0.2 *
MaxOutput.Rows(0)("cMax"))

aDB.Update("Update Grid Set R = 0,G=1,B=0 Where Fre
MaxOutput.Rows(0)("cMax") & " And Freg<" & 0.4 *
MaxOutput.Rows(0)("cMax"))

aDB.Update("Update Grid Set R = 1,G=1,B=0 Where Fr
MaxOutput.Rows(0)("cMax") & " And Freg<" & 0.6 *
MaxOutput.Rows(0)("cMax"))

aDB.Update("Update Grid Set R = 1,G=0.554,B=0 Where
* MaxOutput.Rows(0)("cMax") & " And Freq< " & 0.8 *
MaxOutput.Rows(0)("cMax"))

aDB.Update("Update Grid Set R = 1,G=0,B=0 Where Fre
MaxOutput.Rows(0)("cMax") & " And Freg<=" &
MaxOutput.Rows(0)("cMax"))

End Sub

("&

"

(Freq) As cMin From

q>="&

q>="&0.2*

eq>="8&0.4*

Freq>="& 0.6

q>="&0.8*
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Public Sub averagenum()

Dim Count As Integer
Dim temp As DataTable
Dim temp2 As DataTable
Dim total As Integer

Dim total2 As Integer

temp2 = New DataTable("Anomaly Count")
temp2.Columns.Add("AnomalyCount”, Type.GetT ype("System.Double"))

For i =0 To Serial.Rows.Count — 1

Dim MaxAnomaly As String = "Select Count(AnomalyNo) As cValue
From Anomaly Where CastingNo=""'& CastingNo & " An d
VersionNo="" & VersionNo & " And " & "InspectionNo =&
InspectionNo & " AND SerialNo="" & Serial.Rows(i)(" SerialNo") &

temp = aDB.Query(MaxAnomaly)
total = temp.Rows(0)("cValue")
Dim newRow As DataRow
newRow = temp2.NewRow
newRow("AnomalyCount") = total
temp2.Rows.Add(newRow)

Next i

Dim Value As Integer

total = 0
total2 =0

Fori=0 To temp2.Rows.Count — 1
total2 = temp2.Rows(i)("AnomalyCount")
Value = total + total2
total = Value

Next i

Count = Serial.Rows.Count

Dim result As Integer

result = Value / Count

TextBox2.Text="The Average Number of Anomal ies per Part ="& result

End Sub
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Publ ic Sub averagearea()

Dim Count As Double
Dim Sum As DataTable

Count = Serial.Rows.Count

Sum = aDB.Query("Select Sum(Freq) As cValue From Gr
Dim Sum2 As Double = Sum.Rows(0)("cValue")

Dim AveragelLengthin As Integer = (Sum2 * 0.00155 *
TextBox1.Text = "The Average Anomaly Area per Part

"inn2

End Sub

*The correlation modules all involve variations of

id ")

(GridSize ™ 2))/(Count)

=" & AveragelLengthin &

the code provided here.

www.manharaa.com



57

References Cited

Bala, D., Batson, R.G., Moynihan, G.P., Ray, P.S. (2004), “A visually-oriented goghitgvement
data management systermternational Journal of Automotive Technology and

Managementyol. 4, no. 1, pp. 91-108

Boonsuk, W., Von Busch, S., Jackman, J., Peters, P. (2007), “Surface Anomaly MappiridiasVha
your data done for you lately8FSA: Technical and Operating Conferenoe. 1-6

Carpenter, J. (1996), “Clean Steel Project-lIdentification of agathat Affect Cope Oxide
Inclusions in Steel CastingsSFSA: Technical and Operating Conferenue, 1-39

Daricilar, G. (2005), “Measurement error of visual casting surfag@eiction, Thesis. lowa State

University, pp. 13-35

Jolliffe, 1.T. (2002), “Principal Component Analysis,” New York: Springe

O’Rourke, J. (1998), “Computational Geometry in C,” New York: Cambridge UR3§3245

Prieto, F., Redarce, T., Lepage, R., Boulanger, P. (2002) “An Automated Inspectem Sybe
International Journal of Advanced Manufacturing Technolegy, 19, no. 12, pp. 917-925

Mery, D., Filbert, D. (2002), “Classification of Potential Defects in theofatic Inspection of
Aluminum Castings using Statistical Pattern Recogniti&ufopean Conference of Non-

Destructive Testingpp. 1-13

Mery, D., Acuna, G. (2004-2006), “Automated Multiple View Inspection of Castisgy) Un-

calibrated Image SequenceBgndecyt Cooperatcion Internationglp. 1-2

Schorn, T.J. (2006), “Visual Inspection Errors: Measurement and Impawéfican Foundry

Society Transactiongp. 1-6

www.manaraa.com



58

Acknowledgements

I would like to begin by expressing my gratitude for my major professoFfank Peters. His
encouragement and guidance throughout this research project wag appetciated. | would also
like to thank my other graduate committee members, Dr. Matt Frank aigt@t Chumbley for their
time and effort. Special thanks to Dr. John Jackman for his support on dateb@seand
programming as well as Dr. Maxwell Morris for the direction he pralidgarding data analysis

applications.

At this time, | would also like to thank fellow graduate students who suppbisegrbject. This
includes Wutthigrai Boonsuk for his advice during coding and Greg SaveraidikedRikers for

their encouragement and feedback.

Special thanks to the Steel Founders’ Society of America for theilvement with this project and
to Harrison Steel Casting Company for allowing me to implement the softwayaprat their

foundry. This project benefitted greatly from their participation.

Lastly, | would like to thank my fiancé Lia and my family for all of the&ipport and encouragement

throughout my academic career at lowa State University.

Research was sponsored by the U.S. Army Benet Laboratories and was atwnplider
Cooperative Agreement Number W15QKN-07-2-0001. The views and conclusiaiagned in this
document are those of the authors and should not be interpreted as représewufificjal policies,
either expressed or implied, of U.S. Army Benet Laboratories or the U.StrBwesmt. The U.S.
Government is authorized to reproduce and distribute reprints for Govdrparposes

notwithstanding any copyright notation heron

www.manaraa.com



	2008
	Analysis of casting surface anomalies captured through spatial mapping
	Scott Alan Von Busch
	Recommended Citation


	Microsoft Word - $ASQ3512_supp_6F0FF014-C0A0-11DD-A7AA-FD27D352ABB1.docx

