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 Abstract 
 

The data needed for quality control in the steel casting process is often difficult to obtain.  This is 

especially true when referring to the surface quality of the part as it undergoes multiple inspections.  

A typical inspection involves identifying the location of anomalies and marking them for further 

processing in the cleaning room.  Each time an inspector views a casting, information on the part 

surface quality is conveyed.  This information however, is rarely available for analysis since it is 

recorded directly on the casting.  A few foundries have attempted to collect this surface quality data 

(anomaly type, size, and location) as identified during inspection.  Unfortunately, their data format is 

difficult to manage and has limited analysis opportunities.  This paper presents a software program 

which removes the problems associated with current attempts at data collection.  The program 

provides an easy to use interface for recording anomaly type and location directly on a 3D CAD 

model.  Analysis modules designed for this data include histograms, frequency plots, area 

calculations, correlations, and principal component analysis (flaw pattern recognition).  A case study 

for collecting and analyzing real data from a steel casting foundry was completed using this program.  

Some sample results from this study are included in this paper to illustrate benefits achieved from the 

data collected. 
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Chapter 1.  Introduction 

 
Manufacturing industries rely on data collection to gain understanding and control of their process.  

Typically, this information is related to part quality at critical stages in its production.  For the steel 

casting industry, this type of data can be obtained, but is often difficult to manage.  This is 

particularly true when referring to the surface quality of the casting as evaluated during inspection.  

 

Inspections identify casting surface anomalies through non-destructive evaluation (NDE) methods.  

Anomalies are defined as casting features which must be mitigated before the customer will accept 

the part; common types include cracks, porosity, sand inclusions, and shrinkage.  After anomalies are 

identified, their locations are marked to advise subsequent operators where further processing 

(grinding/welding) is required (Figure 1).  All castings undergo multiple inspections where each time 

it may be approved or marked for additional work.  It is during these inspections where valuable 

information related to the quality of the casting is identified, including the size, type, and location of 

anomalies.  Given that the information is only recorded on the actual casting, it can rarely be used for 

analysis.  

 

         
Figure 1:  Examples of casting surface anomalies marked for cleaning operations. 

 

The value of this data for achieving better process control is acknowledged by foundries and efforts 

have been made to capture it.  Recent studies show the current best-case practice is to collect 

inspection details (inspector, part number, detection method) along with the size and location of 

anomalies on a 2D part drawing.  Since this data is collected on paper, storing it in an accessible 

manner is difficult.  Also as difficult is achieving any evaluation of anomaly locations across many 

parts.  While the effort made to collect the data is good, the format is difficult to manage and has 
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limited analysis opportunities.  The lack of a method for collecting the data in an effective format 

prevents the majority of foundries from even attempting.   

 

In 2007, Iowa State University proposed a new software program for collecting this casting surface 

data (Boonsuk, 2007).  The program, titled Surface Anomaly Mapping*, provides a ‘point and click’ 

interface for marking the anomaly type and location directly on a 3D CAD model.  Additionally, 

users can specify other types of information to record with regards to the part and the inspection.  All 

data entered is stored in an electronic database for easy accessibility on the foundry’s server.  The 

database can be readily linked to other foundry databases housing information on process variables 

related to the part. What results is a repository of data available for analysis.  This program addresses 

problems associated with past collection attempts by providing foundries with manageable data for 

use in multiple analysis applications. 

 

The goal of this study was the development of analysis modules specifically designed for use with the 

software program.  Each module was created to fill an immediate need in the steel casting industry as 

identified through interviews with foundry personnel.  The modules range from purely visual to more 

advanced statistics and provide new analysis options previously unavailable or difficult to attain.   

 

The analysis modules developed are as follows: 

� Histograms-for describing how often each anomaly type is appearing on a particular part 

� Frequency plots-for displaying the distribution of anomaly occurrences across a series of 

parts on the 3D CAD model 

� Anomaly Area-for calculating the size of the anomaly region 

� Correlations-for investigating relationships between process variables and anomaly locations 

� Principal Component Analysis-for classifying parts by their surface flaw pattern  

  

A 10 week case study at a steel casting foundry was completed to trial the software program.  During 

this case study, real data was collected and analysis tools were refined.  Sample results from the study 

are provided as real examples of benefits achieved by utilizing the software program.  The benefits 

from the analysis tools presented in this paper are just the beginning to what foundries could receive 

in the future.  

 

 *Software is copyright protected 
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Chapter 2.  Literature Review 
 
A literature review with regards to casting surface data was conducted with three objectives.  They 

were to confirm the need for the program, to investigate automated data collection methods, and to 

examine related work.  The following paragraphs summarize the information gathered while pursuing 

each objective.    

 

The first objective was to confirm no data collection system currently existed for this type of data.  

After a robust review, no academic or commercial substitutes were identified.  These findings were 

validated through additional interviews with Steel Founders’ Society of America (SFSA) members 

and foundry quality control personnel.  While some foundries were collecting this data, their data 

format produced shortcomings in their analysis.  Research outside the steel casting industry did 

discover a comparable method for tracking defect locations. Though the approach is not suitable for 

casting surface data, it was still closely analyzed for constructive insight.   

 

The automotive case study by Bala et al. (2005) presented a quality management system for tracking 

the location of car door defects.  The system provided users with a software interface for recording 

data and rapidly analyzing it in a visual manner.  Included in their system was the ability to create 

simple statistical outputs, such as pie charts, Pareto diagrams, and concentration diagrams.  The latter 

analysis was of particular interest because it involved defect locations.   

 

Defect locations were recorded by selecting a cell inside an Excel spreadsheet.  The cell represented a 

specific region of the car door defined by the 2D CAD drawing in the background.  The simplicity of 

this method leads to several limitations regarding the data.  First, the data does not capture the size 

and shape of the defect.  Second, the locations are defined in an arbitrary fashion.  This prevents the 

data from being used in other analysis programs and applications.  The data collection program was 

designed for use in the automotive industry and has not been made commercially available.   

 

The second objective was to evaluate whether automated inspection systems were capable of rapidly 

collecting casting surface data.  Multiple studies by Mery (2002-2006) were examined for this 

purpose.  In these studies, casting defects (anomalies) were identified through x-ray or camera images 

captured from multiple angles.  Each image was then analyzed through a set of algorithms for 
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classifying defect regions.  The majority of this research pertained to the inspection of aluminum 

wheels, in which up to 83% were inspected correctly through this system. 

 

Another automated inspection system proposed by Prieto (2002) et al. used a 3D point cloud with the 

3D CAD model for identifying defects.  The point cloud was created by taking a laser scanned image 

of the part from all sides.  These points were then mapped to the 3D CAD model in a software 

program.  The deviation from the point and the 3D model represented areas of possible defects.   

 

There are many other examples of automated inspection systems, but the two studies presented here 

are enough to explain why it is not a popular option in the steel casting industry.  The problem starts 

with the amount of environmental control needed to obtain an accurate image of the casting.  This 

includes the orientation and surface condition of the part, as well as lighting and equipment.  In the 

foundry environment, this can be too difficult to achieve.  This is regardless of whether the image is 

captured by camera or through a 3D laser scan.  Secondly, the inspection systems are not designed to 

capture data.  They are ideally used for pass or fail conditions and often don’t classify the type of 

defect, size, or location.  This alone prevents it from being an option for rapidly collecting casting 

surface data.  As technology improves in the future, these types of systems should be re-evaluated for 

use in this manner. 

 

The final objective of the literature review was to examine past research in which surface data was 

collected.  Two particular studies on visual inspection were examined for their approach in 

identifying and recording anomaly locations.  The study by Daricilar (2005) focused on quantifying 

the amount of variability within and between inspectors.  This was achieved by placing stickers 

directly on the casting where the inspector identified an anomaly.  An image of the casting was then 

taken and sticker locations were automatically identified through a computer algorithm.  The results 

from the study showed the overall effectiveness of the inspector was around 67%. 

 

An independent study conducted by Schorn (2006) also investigated the effectiveness of visual 

inspection.  The objective for this study was less concerned with the locations of defects and placed 

more focus on whether the part was correctly approved or scrapped.   The results agreed with the 

previous study as visual inspection effectiveness ranged from 69-90%.  This implies up to 30% of 

parts were incorrectly inspected.  The cost implications of this ineffectiveness encourage foundries to 
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identify the variability in their own process.  Focus can be centered on determining methods for 

improving their inspection process in the form of better training, lighting, and equipment. 

 

 A clean steel project conducted by Carpenter (1996) provides a third example of collecting casting 

surface data.  In this project, experiments were designed to determine the process variable(s) 

impacting the total amount of dirt on the cope surface.  Each experiment involved recording values 

for each process variable and the size and location of dirt defects on a 2D CAD sketch.  The number 

of variables examined during these experiments exceeded 30, but in the end a gating system change 

resulted in the largest decrease of dirt.   

 

The analysis performed by Daricilar, Schorn, and Carpenter would not be possible without 

information regarding the surface quality of the casting.  The data has proven useful in measuring the 

variability in the visual inspection process and in identifying root causes in defect formation.  This 

demonstrates need for a system that collects and stores casting surface data in an efficient manner.  

 

This literature review met all three of the intended objectives.  First, it confirmed the need for the 

software program presented in this paper.  Second, using automated inspection for rapidly collecting 

surface quality data was determined infeasible.  Thirdly, research examples of where casting surface 

data provided benefits to foundries were identified.  The knowledge gained during this research was 

helpful in shaping the direction for this project.   
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Chapter 3.  System Architecture 
 
The software program consists of three distinct components for configuration, data input, and 

analysis.  Configuration and data input components were created using the Adobe Acrobat 3D 

platform and JavaScript programming language. The data analysis component was developed 

separately as a windows application written in VisualBasic.NET language.  Data can also be readily 

exported to other software programs such as Excel, JMP, and Minitab to take advantage of analysis 

tools already available in those commercial packages.  The three separate components communicate 

with each other through data stored in the anomaly database.  Details on the database are included in 

Appendix A.  A diagram illustrating the system architecture is provided in Table 1. 

 

Table 1:  System architecture for Surface Anomaly Mapping program. 

 
 
 
 
 

User Class System Function    System Component             Data 
 
 

 
Administrator 

 
 
 
 

 
 

Load CAD Model 
/Configure Interface 

 
 
 

 
Operator 

 
 
 
 
 

 
 
 
 

Data Entry 

 
 
 
 

Analyst 
 
 
 
 
 

 
 
 
 

Analyze Data 
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3.1 User Classes 
The accessibility of each component is determined through software user classification.   Users are 

classified as administrators, operators, or analysts based on the function they serve.   Administrators 

are responsible for loading the 3D CAD file into the program and customizing the data input 

interface.  Operators physically enter the data, and analysts pull historical data into analysis tools and 

interpret.  The following sections provide more details on the roles of each user class and the 

components they interact with.  

 

3.1.1 Administrators 

The administrator user class is responsible for two primary functions.  First, to load the 3D CAD files 

into the program and second, to customize the data input interface for meeting the foundry’s specific 

needs.  Loading models is a simple process due to the many different file formats accepted by Adobe 

Acrobat 3D.  All models created in major CAD packages, as well as standard transfer file formats 

such as .STL or .IGES are recognized.  The administrator can also at this time modify the model’s 

color, lighting, and rendering.  Once a 3D CAD model is loaded into the program it becomes a unique 

PDF document for easy accessibility.   

 

The administrator’s second function is to customize the data input interface.  An example of a fully 

configured interface is shown in Figure 2.  In this example, the anomaly types selected include cracks, 

dirt, sand, porosity, and shrinkage.  A color is also associated to each anomaly type for distinguishing 

its locations on the part model.  Administrators can configure how many anomaly types to collect, the 

terminology used (example: gas instead of porosity), and the color associated with it.   

 

In addition to specifying anomaly types, administrators determine which CAD views are accessible 

to the operator for marking anomaly locations.  This is necessary for multiple reasons.  First, 

allowing free rotation of the 3D CAD model would increase the complexity and the computer 

knowledge required by the operator.  Second, by specifying a set of CAD views, data entry is quicker 

and the data collected can be analyzed in an efficient manner (See Chapter 4).  The default setting is 

to include the six standard CAD views (front, back, top, bottom, left, and right).  However more 

views can easily be added or removed.  Additional views could display cross sectional areas for 

capturing interior geometry, as well as views for marking otherwise inaccessible regions.  It is 

estimated that a typical casting will require 6-10 views for capturing data.       
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Figure 2:  Example of fully configured data input interface for a specific foundry.  Configurable items include the 
‘Anomaly Commands’, ‘View Commands’, ‘Part Informat ion’, and ‘Inspection Details.’   

 

The fields for recording part and inspection information are the final configurable aspect of the data 

input interface.  It is here where administrators specify what part information (pattern number, mold 

date, heat code, etc.) and inspection details (inspector, inspection station, detection method, etc.) to 

collect.  The only requirement is the part information and inspection details make the data entry 

unique.  Typically, this is accomplished by including a serial number for representing a specific part 

and an inspection number for denoting when the data was captured.  Recording the inspection number 

also allows greater analysis of the entire cleaning room process.  For instance, it can identify what is 

being marked the 2nd, 3rd, and 4th time inspected.  Another good practice is to record the necessary 

information for linking the specific part entry to data store in other foundry databases.  This thereby 

increases the data set available for performing analysis later. 
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3.1.2 Operators 

Operators are responsible for entering data once the administrator has loaded the CAD models and 

configured the work space.  Users in this class require only basic computer knowledge due to the user 

friendly design of the data input interface.  The procedure for data entry begins by recording part 

information and inspection details in the appropriate fields (See Figure 2).  Entering this data is 

accomplished through typing or selecting items in a drop down list.  The following steps in the 

procedure assume the operator is entering data while the casting is being inspected.   

 

After entering the required information, the next step is to mark anomalies on the CAD model.  To 

accomplish this, the operator first selects the CAD view representing the side of the casting being 

inspected.  Selecting the CAD view will automatically rotate the 3D model to the appropriate side.  

The operator can then pick the anomaly type to be marked from the anomaly command list.  Upon 

choosing one, the operator is prompted to define a set of points for creating a polygon.  Each point is 

created by clicking anywhere on the model.  Subsequent points are connected with lines for outlining 

the region containing the anomaly.  Polygons can be of any shape and size, but must contain at least 

three points and have no self intersecting segments.   

 

To aid in marking anomalies, operators can zoom and pan to specific areas on the model.  The 

distance between the last point and the mouse position is also displayed to assist the operator in 

marking the correct anomaly size.  This process of selecting a CAD view, choosing an anomaly type, 

and creating a polygon repeats for every anomaly identified by the inspector.   

 

The final step for the operator is to click the SAVE button for populating the database with the new 

data.  Data transferred to the anomaly database includes all part and inspection details, as well as the 

x, y, z coordinates of each point marked on the model.  The associated CAD view used for marking 

each anomaly polygon is also saved to the database.  The relevance of saving the CAD view is 

explained later when frequency plots are discussed.  For understanding where the information is 

stored in the database, please reference Appendix A. 

 

3.1.3 Analysts 

Analysts are responsible for analyzing the historical data located in the anomaly database.  The 

different analysis tools available for them to use are histograms, frequency plots, area calculations, 

correlations, and principal component analysis.  Data can also be readily exported to other software 
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programs for taking advantage of other analysis applications.  Due to the complexity of some of these 

analysis tools, the users in this class would typically include quality control managers or engineering 

staff.  Knowledge of how to use statistical software packages (JMP or Minitab) is also required. 

 

The procedure for conducting any analysis begins by determining what historical data needs retrieved 

from the anomaly database.  Analysts accomplish this by defining a criterion which parts must match 

in order to be included in the data set (Figure 3).  This search criterion is created by first selecting a 

particular casting type (usually denoted by a casting number).  At this point, the user can choose to 

run an analysis that includes all parts matching the casting type.  If desired however, analysts have the 

option to constrain the data set even more by choosing additional attributes the part data must match. 

This could include specifying a serial number, an inspection date range, or an inspector ID.   The type 

and number of attributes available is dependent on how the administrator configured the data input 

interface. Only parts matching the criteria will be included in the dataset.  The data can be constrained 

even further still by specifying a particular anomaly type for analysis.  For example, if the analyst is 

only interested in cracks they can ignore data regarding other anomaly types. 

 

 
Figure 3:  Windows application for specifying analysis type and for defining search criteria for what parts to include 
in the data set. 
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The next step after defining the data set depends on what type of analysis is being performed.  

Histograms require no additional information and the output will appear inside the window 

application.  For all other modules, the analyst must specify a grid size.  Aspects to consider when 

selecting a grid size are saved for later discussion in Chapter 6.  Once the grid size is chosen, 

frequency plots and area calculations can be conducted and outputs appear in Adobe or Excel. 

The correlation and principal component modules require additional details since these analyses are 

with respect to specific locations on the CAD model.  Analysts define locations by entering the 

minimum and maximum x,y,z coordinates for the region.  These coordinates are obtained from the 3D 

CAD model in Adobe.  The CAD view related to the location must also be entered in the program 

(Figure 4).  The output from these modules is a dataset ready for further analysis inside statistical 

software packages such as JMP or Excel.  More details on the different types of analysis modules are 

described fully in the next chapter. 

 

 

Figure 4:  Windows application for running correlations and principal component analysis.  Regions are defined by 
their minimum and maximum coordinates and CAD view number.   

 

 

 

 

 

 

Min Coordinate 
(X1, Y1, Z1) 

 

Max Coordinate 
(X2, Y2, Z2) 
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Chapter 4.  Data Analysis Modules 
 
The data analysis modules were designed to assist foundries by evaluating data captured with the 

software program.  Most require minimal human intervention and are easy to interpret.  The following 

sections outline the approach for creating histograms, frequency plots, calculating anomaly area, 

performing correlations (process and location based), as well as principal component analysis.  The 

analysis modules are designed to either create a data set and perform the analysis or create a data set 

and export it to a statistical software program.  Results then may appear as a PDF, inside Excel, or 

within a statistical software program (such as JMP or Minitab).  For information on how the software 

collects and stores the data used for analysis, please reference Chapter 3.  

 

4.1 Histograms 
 Histograms are a visual tool for describing how often an anomaly type appears on a particular 

casting.  A histogram is comprised of a series of columns, a vertical axis for quantifying the 

frequency, and a horizontal axis for identifying each bin or variable.  The frequency for each anomaly 

type is calculated through a database count query and shown through the height of its corresponding 

column.  Each column is color coded to distinguish anomaly type and to match the color scheme used 

in the data input interface.      

 

The main benefit of generating histograms is the increased awareness of those anomaly types which 

produce the majority of additional cleaning room operations.  Commonly, histograms are organized to 

show decreasing frequency levels from left to right.  This format is often called a Pareto chart and is 

used extensively by quality departments for concentrating their efforts.  An example of a histogram is 

shown in Figure 5. 

 

 
Figure 5:  Histogram showing the frequency of anomaly type. 



www.manaraa.com

13 
 

 

4.2 Frequency Plots 
Frequency plots are a graphical tool for displaying the distribution of anomaly occurrences with 

respect to CAD model locations.  The frequency plot appears in Adobe Acrobat 3D as a series of 

CAD views matching the ones used for data input.   Each CAD view is mapped with a range of colors 

for representing the frequency count at different locations.  The output also includes a scale for 

quantifying the count associated to each of the five colors.   An example frequency plot is shown in 

Figure 6.  From this output, users can readily identify high and low anomaly activity by 

distinguishing between the red and blue regions respectively.   

 

                      
Figure 6:  Frequency plot example showing two CAD views. 

 

As is the case with all analysis modules, frequency plots are created based on data derived from a 

series of parts.  The parts included in the data set are at the discretion of the user (See Section 3.1.3).  

The following sections provide detail on the three main operations for generating frequency plots.  In 

order, the operations are as follows:  defining locations, checking locations for anomaly activity 

(point in polygon testing), and coloring locations based on their final anomaly count.     

 

 

4.2.1 Defining Locations 
The first step in creating a frequency plot is producing a set of locations to check for anomalies.  The 

original approach aimed at defining these locations directly on the 3D CAD model.  Unfortunately, 

this proved infeasible due to limitations inside the current Adobe Acrobat platform.  As an alternative 

approach, the CAD bounding box is utilized to create 2D representations of actual locations on the 3D 

model.   

 

A bounding box contains all points for a 3D CAD model, where each face represents a specific side 

or view.  The primary use of bounding boxes is to rotate 3D models to individual views inside CAD 
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packages.  Likewise, the bounding box allows users to change views during data entry for this 

program.  The bounding box created for defining locations is identical to the one used for data entry.  

Bounding boxes are typically axis aligned, meaning each side is parallel to one of the major axes.  

When defining locations, points on each side of the bounding box are used to represent points in the 

associated view of the 3D model.  Even though these locations are not defined on the model itself, 

this method comes closest to achieving the original intent. 

 

Calculating the bounding box requires the minimum and maximum coordinates of the 3D CAD 

model.  Once these are acquired, each bounding box side is defined through a combination of those 

coordinates.  The example provided in Figure 7 shows how the front face is created.  The next 

function is to create a set of points on the six surfaces of the bounding box.  To accomplish this, all 

sides are partitioned into a grid of equally sized cells.  The midpoint of each cell denotes a site on the 

bounding box surface for representing an actual point on the 3D model (Figure 7).  The final step in 

defining locations is storing grid cell midpoints in a data table.  These points, stored as 2D 

coordinates, are later used in a point-in-polygon algorithm for determining how many times they fall 

inside an anomaly. 

 

 

 

 

 

 

Figure 7:  Steps for defining locations by utilizing the CAD bounding box (BB).  Left:  Bounding box created by 
maximum and minimum coordinates of the CAD model.  Middle:  Bounding box sides defined from different 
combinations of CAD coordinates.  Right:  Bounding box side partitioned into grid for defining locations. 
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4.2.2 Point-in-Polygon Test 

A point-in-polygon test determines if grid cell midpoints are located inside of anomaly regions.  

Recall that anomalies are defined by polygons on the surface of the 3D CAD model.  These polygons 

are stored as a set of 3D coordinates and must be projected to the appropriate bounding box face in 

order to lie in the same plane as the points (locations) being checked. This provides reasoning for why 

the CAD view, used when marking the polygon, is stored in the database.  It ensures polygon vertices 

are projected to the correct bounding box surface.   

 

Projecting the polygon vertices is a matter of performing an orthogonal transformation for every 

point.  An orthogonal transformation removes the coordinate whose axis is parallel to the normal 

vector of the bounding box face.  For instance if the face has a normal vector of [0, 0, 1], the z 

coordinate is removed.  This transformation must occur for all polygon vertices prior to use in the 

point-in-polygon algorithm.  If the bounding box is not axis aligned, a more complicated 

transformation must occur. 

 

The point-in-polygon algorithm selected for this study is commonly coined the “number of crossings” 

or “even/odd” method (O’Rourke, 1998).  The “even/odd” method works by counting the number of 

time a ray, originating at the cell midpoint, crosses each line segment of the anomaly polygon.  If the 

ray crosses an even number of times, the point is outside the polygon.  Odd number of crossings 

signifies a point within.  This method was chosen because it works for all simple polygon shapes 

(concave or convex) and is calculated quickly. 

 

 
Figure 8:  Point-in-polygon test example.  Point A crosses twice and is outside.  Point B crosses once and is inside. 
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The logic for the test is quite simple in nature and is best described through the visual shown in 

Figure 8.  In this example, the polygon lies in the xy plane and Points A and B are examined.  The test 

begins by classifying what side of the line segment the point sets on.  This is done to ensure the rays, 

created from the points, are crossing all line segments from the same side.  The importance of this can 

be seen in the Figure 8 above.  If Point B had no constraint on the direction of the ray, it would 

intersect line segments 2 and 4, causing the test to incorrectly categorize the point as outside the 

polygon.  The equation shown in Figure 9 is a combination of the point coordinate with the equation 

for a line segment.  Points generating negative values are on one side of the line, positives on the 

other.  By only continuing the test with points generating negative values, the rays will cross the line 

segments from the same side.   

 

 

 

 

 

Figure 9:  Equation for ensuring rays all intersect from the same side of each line segment. 

 
Points on the correct side of the line will then be tested to determine if their ray intersects the line 

segment.  This is accomplished by comparing the y coordinate of the point with the y coordinates of 

the line segment’s vertices.  If the point lies between them, the ray intersects.  This test repeats for 

every line segment of the polygon.  The final number of intersections is then used to classify the 

point.  In the given example, Point A crosses twice and is outside and Point B is inside by crossing 

only once.  The set of inequalities used for checking the point with each line segment is shown in 

Figure 10.  Only points satisfying the equation are used in the test. 

 

 

                                        

Figure 10:  Inequality for testing whether the ray intersects the line segment.  In order for the ray to intersect, the 
point coordinate must satisfy these conditions.    

 

The inequality also is designed to handle the situation when a ray intersects a polygon vertex.  A 

problem could occur in this situation since the ray technically crosses both line segments sharing the 

same end point.  An example of this is shown in Figure 11, where the ray intersects line segments 1 

and 2.  The number of crossings for this point would falsely classify it as being inside the polygon.  

(Py-Y1) – [(Y2-Y1) / (X2-X1)] * (Px-X1) < 0 
 

(Px, Py) = coordinate of point 
 

(X1, Y1) & (X2, Y2) = endpoints of line segment 

Y1 < Py AND Py <= Y2 OR Py <= Y1 AND Y2<Py 
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To handle this situation, the inequality only allows one of these line segments to be counted.  This 

ensures the output from the test remains accurate.  When a ray intersects a polygon vertex, only line 

segments located below the point are tallied.  The complete logic for the point-in-polygon test is 

provided in Appendix B. 

 

 
Figure 11:  Example where ray intersects a polygon vertex.  The inequality for checking intersections prevents both 
line segments from being counted.  In this case, line segment 2 is counted and segment 1 is ignored. 

 

 

4.2.3 Color Mapping 

Color is used to identify how many times anomalies appeared at specific locations on the part.  The 

color mapped to each location is determined by the final count associated with each grid cell 

midpoint.  Cell midpoints which have a final count of ‘0’ receive no color, while all other midpoints 

are painted blue, green, orange, yellow, or red.   

 

Each of the colors represents a specific range of frequency count.  This range is determined by 

subtracting the lowest frequency count from the highest and dividing the value equally into the five 

color categories.  For example, if the maximum count is 60 and the minimum is 10, each color would 

include a range of 10 values.  Figure 12 shows the scale created in this situation.  Colors were chosen 

to match similar outputs found in finite element analysis (FEA) and solidification software. 

 
  

 

Figure 12:  Frequency plot color scale based on example values. 

 

10 20 30 40 50 60 



www.manaraa.com

18 
 

 

The frequency plots developed here provides many benefits to foundries.  Visually, they describe the 

location, severity, and type of anomalies on a particular part.  This information can be used in 

multiple ways.  Foundries can identify variances within their inspection process.  This could include 

differences between operators, between stations (lighting), or equipment (dry or wet mag).  Secondly, 

the output can be utilized for analyzing the effect of process changes.  As an example, consider the 

case where a foundry wants to determine the impact of pouring temperature.  This type of analysis 

would require two separate frequency plots.  One, with a data set from parts poured at a ‘high 

temperature range’ and the other from parts poured at a ‘cold temperature range’.  The foundry could 

then compare these two plots for trends in anomaly location, type, and severity.   Later in this paper a 

more quantitative method for measuring the effect of process parameters is discussed.   

 
 

4.3 Anomaly Area 
The size of an anomaly is an important quality measure calculated from frequency plot results.  It is 

computed by counting how many grid cells are located inside an anomaly polygon.  This frequency 

number is then multiplied by the grid cell size to determine the area.  For instance, if the grid cell is 

one square inch in size, the area would equal the count (Figure 13).  Area calculations are all 2D 

estimates of a 3D polygon.   

 

 
Figure 13:  Anomaly area is based on the number of grid cells inside the polygon region.  In the example above, the 
number of cells is equal to 7.  Assuming the grid cell size is 1 in2, the anomaly area would equal 7 in2. 

 

The total anomaly area can also be calculated for a group of parts and displayed as a histogram.  This 

type of output is called a ‘Total Anomaly Area Breakdown’ and is used to identify parts which have 

significantly lower or higher values with respect to the average.  An example of this is shown in 

Figure 14.  By identifying the outliers, quality personnel can focus on discovering differences in the 

1 in2 
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processes used to make those parts.  Upper and lower control limits can also be placed on the graph 

for easier identification of parts with abnormal values. 

 

 
Figure 14:  Total anomaly area breakdown histogram.  

 
 

4.4 Correlations 
Correlations are used to quantify the strength of relationship between different variables.  For this 

study, three different types of correlations are shown to illustrate this analysis tool: 

� Process Parameter vs. Anomaly Area 

� Process Parameter vs. Anomaly Location 

� Anomaly Location vs. Anomaly Location 

 

The purpose of the correlation module is to generate data sets for analysis in regression models.  All 

data sets created with the program are easily exported for evaluation inside commercial statistical 

software.  The focus of the following sections will discuss how these data sets are created for each 

correlation type. 

 
4.4.1 Process Parameter vs. Anomaly Area 

The first correlation example attempts to identify process variables impacting the total anomaly area 

of the part.  To generate the appropriate data set, the total anomaly area must first be calculated.  The 

procedure for calculating this area was discussed previously in Section 4.3.  Process variables being 
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investigated must be pulled from existing foundry databases.  A hypothetical dataset is shown in 

Table 2.  Notice each row represents a specific part with a pouring temperature and total anomaly 

area value.  From here, the data set is readily exported to a statistics software program for undergoing 

regression analysis.  The example data set only contains one process variable, but additional ones 

could be added for multiple regression analysis.  Since there are many process variables influencing 

the quality of the part, it may be best to include more than one.   

 

Table 2:  Hypothetical data set for Process Parameter vs. Total Anomaly Area correlation. 

Casting Pouring Temperature Total Anomaly Area 

#100 2800 20 
#200 2820 35 
#300 2810 30 
#400 2890 50 
#500 2880 45 

 

A unique aspect of this correlation is the ability to use data from multiple types of castings.  This is 

done by dividing the total anomaly area by the total surface area for the casting.  The percentage 

which results can be used for identifying process variables impacting total anomaly area on more than 

one casting type.  For example, the time of year may affect the permeability of the mold.  This could 

cause more porosity to appear across all parts.   

 

4.4.2 Process Parameter vs. Anomaly Locations 

The second type of correlation aims at discovering process conditions causing the formation of 

anomalies at specific regions on the casting.  In contrast to the macro approach of the first correlation, 

this type allows users to narrow in on locations of interest.  This in turn increases the possibility of 

discovering why certain anomalies occur at specific locations.   

 

To conduct this analysis, users must first determine what location to pursue.  This is accomplished by 

creating a frequency plot for a casting of choice and examining the output.  The output of the 

frequency plot visually shows which regions have high, medium, and low severity through color.  

From this information, users select a location of interest.  For example, if the user wants to determine 

what causes anomalies to randomly appear, they can select a location with low to medium severity.  

Regions with unexplained high severity also make good candidates.   
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Figure 15 shows an example of a frequency plot for a particular casting.  From this image, locations 

having different levels of severity are easily identified.  Region #1 represents a location with 

randomly appearing anomalies, while Region #2 is a location with high concentration of anomaly 

activity.   

 
Figure 15:  Frequency plot output for identifying locations of interest.  

 
A location of interest is then chosen and inputted into the software program.  Details on how the 

location is entered can be found in Section 3.1.3.  The ensuing computations then determine how 

many times an anomaly was present in the particular location.  How these computations work is 

discussed during the frequency plot section of this paper (4.2).  The output however, is slightly 

different then frequency plots.   Instead of summing the data together, details on each individual part 

are preserved.  This includes a binary response for every point tested within the location.  A point 

receives a ‘1’ if it falls inside an anomaly, ‘0’ otherwise.  An example data row for one individual 

casting is shown in Figure 16.  The particular part had one anomaly in the location chosen, resulting 

in two points receiving a value of “1”.  In reality, the data set for this correlation would contain many 

more rows for including more parts.   

 

 
Figure 16:  Left:  Location divided into six cells with red polygon representing an anomaly region.  Right:  Sample 
data set created from this situation. 

 

Part No. (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) 
#200 0 0 1 0 1 0 
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There are two options for continuing with this data set.  The first option is to leave the data in the 

current format and perform a logistic regression analysis.  This type of analysis provides information 

on the probability an anomaly will occur anywhere in the region given a change in the process 

variable.  Again, this is easily calculated in a statistical software program.  The other option is to use 

traditional linear regression models for noticing relationships.  Before this can occur however, the 

data set must be adjusted.   

 

In order to utilize a linear regression model, the binary data is converted to a continuous variable.  If 

left in the current binary format, the results from the regression model would not be accurate.  Linear 

regression models require data which is continuous and unbounded.  Binary variables violate both of 

these conditions.  A fast and efficient method for manipulating the data from binary to continuous is 

to sum the values for each part.  The sum of these binary variables is then multiplied by the grid cell 

size for representing the total anomaly area for the region.  Table 3 below shows a sample data set 

before and after the binary values are converted.  This new data set no longer violates the use of a 

linear regression model.   

 

Table 3:  Data set with binary values summed to total anomaly area. 

 
 

 

 

 

4.4.3 Anomaly Location vs. Anomaly Location 

Type three of the correlations investigates if a relationship exists between anomalies appearing at two 

or more distinct locations on a casting. The procedure for selecting the locations involves analyzing 

the frequency plot for regions with similar levels of severity. The program then creates a data set in 

the same fashion as the previous type. Once the data set is generated, the binary data must be 

converted to total anomaly area as before. An example data set is shown in Table 4. 

 
Table 4:  Hypothetical data set for Anomaly Location vs. Anomaly Location correlation. 

Part No. Location #1 (Anomaly Area) Location #2 (Anomaly Area) 
#100 14 9 
#200 7 11 
#300 0 17 
#400 12 10 
#500 0 0 

Part No. (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) Anomaly Area 
#200 0 0 1 0 1 0 2 
#300 1 0 0 1 1 1 4 
#400 0 0 0 0 1 0 1 
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Parts are then grouped based on the presence of anomalies in the different locations.  These three 

categories are:    

� Parts with anomalies at both locations 

� Parts with anomalies at one location 

� Parts with no anomalies at either location 

 

The number of parts in each group is then used for calculating percentages.  These percentages 

represent the probability an anomaly will appear at one location, given an anomaly was found at the 

other.  Table 5 shows the final data set for calculating these percentages.  According to the data, there 

is a 75% probability an anomaly will appear in both locations if it appears in one.  It can also be 

estimated that the anomaly appearing in the second location will be approximately 9.4 in2.  The 

purpose for doing this type of analysis is identifying anomalies which share the same root cause, 

making the appropriate process change, and eliminating both.   

 

Table 5:  Data set with parts categorized. 

 

Part No. Location #1  Location #2  Both  One  None 
#100 14 9 1 0 0 
#200 7 11 1 0 0 
#300 0 17 0 1 0 
#400 12 10 1 0 0 
#500 0 0 0 0 1 

  Total: 3 1 1 
 
 
After completing this analysis, users may want to pull in process parameters used to make the casting.  

This provides the data set necessary for performing a Process Parameter vs. Anomaly Location 

correlation. By knowing the relationship between two separate locations, the result from one 

correlation may identify the process variable influencing both. Therefore, a change to eliminate one 

anomaly from occurring may in fact eliminate two or more.  The example described here only looks 

at two locations, but there is no limit to how many locations can be analyzed.  The same procedure 

can be applied.   
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4.5 Principal Component Analysis 
Prior to this section, the majority of analysis tools were designed to be quick, simple, and efficient 

measures.  This section describes a more advanced application available for use with the data set.  

The statistical tool described in this section is called Principal Component Analysis (PCA).  It is 

commonly used for reducing multi-dimensional data sets into lower dimensions for analysis purposes.  

In other words, it is used to simplify data sets into as few variables as possible while still maintaining 

the data’s meaning.  The intended purpose for applying PCA is to characterize and group parts by 

their anomaly flaw pattern.  

 

This type of application is well suited for the data set generated by the program.  Each casting is 

characterized by a vast amount of points depending on the size. For example, if a casting is 4’ x 4’ x 

4’, the number of specific locations would approximately be 45,000 (assuming cell size is 1x1”).  

This means the data set would have 45,000 coordinates with binary responses for characterizing one 

part flaw pattern.  PCA tries to describe the same data in significantly lesser amount of variables.  As 

was the case with correlations, the main purpose of the module is to present the data in the 

appropriate format for analysis.  This data is readily exported to statistical packages for the actual 

principal component analysis.  A sample data set is shown below in Table 6.  This simplified set 

contains only 3 variables (locations) for 10 parts.  In a real application, this number is significantly 

greater.  Two principal component values were generated from this data set.  Note how the values are 

identical for parts with identical flaw patterns. 

 
Table 6:  Data set for principal component analysis. 

 
Part No.   Point 1   Point 2    Point 3     PC 1    PC 2 

#100 1 1 0 1.40 0.72 
#200 1 1 0 1.40 0.72 
#300 0 1 0 0.51 -0.99 
#400 0 1 0 0.51 -0.99 
#500 0 0 1 -1.91 0.26 
#600 0 0 1 -1.91 0.26 

 
In brief, PCA works by obtaining principal component values for each part in the data set.  A data set 

with ‘n’ number of parts has the potential of creating ‘n’ number of principal components.  The goal 

however is to use the least number of principal components for representing the original data set.  If 

all possible principal components are used there is no real advantage.  For data from this program, 

principal components will replace the large set of part coordinates. 
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The procedure for transforming the original data into a set of principal component values involves 

first normalizing the data set.  Once the data is normalized, a covariance matrix is created.  

Covariance matrices describe the relationship between all points with respect to each other.  A set of 

‘n’ points, results in an ‘n’ x ‘n’ matrix, where the diagonal values are the variance for each 

individual point.  Eigen vectors are then calculated from this covariance matrix.  These vectors are 

unique, because when multiplied by the covariance matrix the direction of the vector does not change.  

In fact, the vector is either scaled up or down.  The amount the vector changes size is given the term 

eigen value.  The higher the eigen value, the more variance it accounts for in the data set.  The eigen 

vectors for the covariance matrix are placed inside their own matrix.  The original data set is then 

taken in linear combination with this matrix for determining principal components.  For example, five 

eigen vectors results in the creation of five principal components. 

 

Principal components account for a specific percentage of the total variance in the original data.  The 

first principal component contains the majority of variance since it is created by combining the 

original data with the eigen vector having the largest eigen value.  For instance, the first value may 

describe 25% of the total variance in the data set.  Subsequent components account for greatest 

variance not correlated to previous principal components (Jolliffe, 2002).  The effect is cumulative.  

Two component values by themselves may contain 24% and 8% respectively, but together they 

represent 32% of the variance in the data.  

 

Identifying parts with irregular flaw patterns or groups of parts with similar ones is then accomplished 

by sorting the data by a particular principal component.  Irregular flaw patterns appear in parts which 

have abnormally high or low principal component values.  To determine their flaw pattern, a 

frequency plot for the specific part must be created and compared to the frequency plot for all parts.  

Parts with similar types of flaw patterns will contain principal component values relatively close to 

each other.  Typically, only a few principal component values need to be analyzed to discover these 

types of trends.  A good measure for knowing when to stop analyzing is when successive principal 

component values identify the same parts as being outliers.  Principal component values can also be 

used in correlations with process variables for identifying process conditions which result in a 

particular flaw pattern.   An example of a PCA is included in the Chapter 5 case study.   It is 

important to note that PCA was not designed for use with binary variables, but has proven to work 

remarkably well in this application. 
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Chapter 5.  Case Study 

 
During the summer of 2008, a case study at Harrison Steel Casting Company in Attica, Indiana was 

completed. The goal was to implement the software program in a steel casting foundry and begin 

collecting and analyzing data.  Harrison Steel was selected in part based on their established practice 

of recording surface quality information during inspections.  The products produced by this foundry 

range from 300 to 12,500 lbs and are made from carbon and low alloy steel. 

 

The foundry’s quality department is in charge of collecting data on casting surface quality as marked 

by inspectors.  To collect this data, operators are positioned at inspection stations for recording 

anomaly locations on a 2D drawing.  Operators denote the anomaly type by the shape of the marking 

and classify its location (interior or exterior) through color.   Other valuable information such as the 

serial number, inspector, and detection method are written down as well.   An example of one of these 

data collection sheets is shown in Figure 17.  Data is collected under these conditions for every first 

time part inspection, as needs arise, and on a continual basis for some castings.  All data sheets are 

filed away and kept for later reference upon request.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17:  Data sheet for casting surface quality information at Harrison Steel. 
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5.1 Methodology 

Five castings were chosen based on interest from the foundry in obtaining a data set for making 

process improvements. These castings ranged from 2000 to 10,000 lbs and were manufactured on two 

separate production lines.  The castings chosen were regularly produced.   

 

Surface quality data was collected by transferring the information recorded on data sheets (See Figure 

17) to the software program.  The time involved transferring the data varies on the number of 

anomalies present.  Each anomaly takes approximately 10 seconds to enter into the program.  

Average anomaly size recorded was around two square inches. Examples of how the data appears 

before and after being entered into the program are shown in Appendix B. 

 

 The data captured at the foundry was stored in a Microsoft Access 2007 database located on a single 

computer.  At the end of the 10 week study, over 300 parts were entered with a minimum of 30 for 

each of the five castings.  Analysis of this data was completed using information from the anomaly 

database and from current part databases already on the foundry’s SQL server. 

 

5.2 Results 

Analysis of the data collected during the case study was conducted in the subsequent months after 

leaving the foundry.  Sample results are used to illustrate the types of benefits foundries can achieve.  

The subject matter selected for analysis was chosen by the author and is by no means a complete list 

of what could be investigated using the data.  In most cases, the examples require a larger data set 

with further analysis for making broad conclusions.  Some results were modified to protect the 

confidentiality of the data, without altering its meaning.     

 

5.2.1 Variation in Inspection 

The first example shows how frequency plots are used to identify valuable information on the 

inspection process.  The focus of this study was to determine if there was any noticeable difference in 

parts inspected by one operator compared to another.  To accomplish this objective, two frequency 

plots were created.  One using parts inspected by Operator A, the other with parts by Operator B.  

Both outputs were then visually contrasted to identify differences in anomaly cluster locations, 

frequency, and area.   
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Visual comparison of the two frequency plots identified a casting region with a significant 

discrepancy in frequency count.   Operator A marked anomalies in the region over 80% of the time, 

while Operator B, only found anomalies 17% of the time.  Figure 18 displays the frequency plots 

derived from each operator.  The region of question is circled on each image for reference.   

 

 
Figure 18:  Frequency plot showing casting region containing large discrepancy between operators. 

 

The following steps concentrated on what may have caused this variability.  This included comparing 

the process variables used to create the parts inspected by each operator.  When no clear trend 

presented itself, investigation switched to the process used by each operator for inspection.  Items 

such as inspection location, inspection equipment, experience level, and work shift were targets for 

comparison.  The inspection location and equipment were identical, but Operator A had far greater 

experience inspecting this particular casting.  The question then becomes is Operator B insufficiently 

trained or is Operator A over inspecting.  Time did not permit during the case study to collect more 

data and analyze this further.  Operator measurement error was also not a specific focus of this 

project.  It does however provide a powerful example of what can be identified through frequency 

plots.   
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5.2.2 Anomaly Correlations 

The next example describes how the correlation module was used to identify the relationship between 

cracks appearing at two distinct locations.  Figure 19 below highlights the two locations of interest on 

this casting.  These locations were selected based on their similar levels of severity.   

The results from the study are also displayed in Figure 19.  From these results, there is a 60% 

probability of cracks appearing in both locations.  This provides motivation to determine the cause for 

cracks in one location with the hope it may be the reasoning for both.  The stronger the relationship 

between anomalies at separate locations, the greater the likelihood they share the same root causation.   

 

 
      Figure 19:  Left: Frequency plot with two locations of interest highlighted.  Right: Results from correlation study. 

                                                                                                                        

The process variables used to make the parts along with their anomaly area for the two locations was 

then analyzed.  The analysis was capable of determining which parameters had no influence, but was 

unable to identify ones having significant impact.  It is likely then, the cause of the cracks may be 

related to the design of the casting.  This could include anything from the casting’s geometry to the 

gating system.  Experiments would be necessary to validate this assumption.  While the module 

provides foundries with information on potential relationships, it cannot prove causation.   

 

5.2.3 Casting Classification 

The final example shows how principal component analysis (PCA) is used for classifying parts by 

their surface flaw pattern.  PCA was conducted on a data set including 80 parts of the same casting.  

To improve performance, the data set was first reduced.  This was accomplished by limiting the 

analysis to only one side of the casting.  Points on the side which never contained anomalies were 

Both One None 
29 17 2 

60.4% 35.4% 4.2% 
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also removed to further reduce the data set.  Even with this reduction, there was still over 1500 points 

for describing the flaw pattern for one part.   

 

The final data set used for analysis was created by the software program and contained 80 rows and 

1500 columns.  Details on how this set is generated can be found in Section 4.5.  The frequency plot 

output from all 80 parts is shown in Figure 20.  From the output, the typical flaw pattern for this 

casting can be identified as regions colored in red, orange, and yellow, representing high anomaly 

frequency.  Atypical flaw patterns consist of regions with low frequency count appearing blue. 

 

 
Figure 20:  Frequency plot output from 80 parts. 

 

The PCA produces a set of principal component (PC) values for all 80 parts.  The number of PC 

values is equivalent to the number of points representing the flaw pattern.  However, it is not 

necessary or valuable to analyze them all.  Each PC value accounts for a certain percentage of 

variance from the original data set.  The PC values used for analysis are those which contain the 

highest percentage level.  In this example, only a handful is needed for grouping the parts effectively.  

A single PC value for a particular part contains no real meaning.  It only becomes practical for 

analysis when it is compared with others.   

 

PC values are used as criteria for sorting the parts.  The parts are initially sorted by the first PC value.  

This naturally groups parts by their surface flaw pattern as those sharing similar PC values and 

identifies outliers in the data set.  These outliers are of particular interest because they represent parts 

with unique patterns.  Table 7 below provides a list of interesting parts produced from this initial sort.   

 

In this case only two parts contained extreme values.  Serial numbers 100 and 531.  The first 

contained a unique flaw pattern and large amount of anomaly area.  The second, 135, exhibited a 
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unique flaw pattern when compared to the norm.  Parts which received identical PC values were 

identified as having zero anomalies on the surface for this view.  All other parts had PC values 

ranging from 2 to -2, with a mean value of -1.24.   The majority of these parts were noted as having 

common location of anomaly activity.  These common locations are identical to the regions on the 

overall frequency plot (Figure 20) which are red. The frequency plots from Table 7 are displayed in 

Figure 21 for illustrating flaw patterns.   

 

Table 7:  Results from sorting parts by the first PC value. 

Serial Number PC 1 Value Comments 
#100 77.88 Large Anomaly Area 
#531 18.08 Unique Flaw Pattern 
#022 -0.93 No Anomalies 
#200 -0.93 No Anomalies 
#175 -0.93 No Anomalies 
#010 -0.93 No Anomalies 
#084 -1.24 Typical Flaw Pattern 

 

 

(a)                                             (b)                                           (c) 

 

Figure 21:  Frequency plot output from parts identified through first principal component value.  Images show 

outputs from # 100 (a), #531 (b), and #084 (c).  

 

The same process of sorting is used for identifying casting flaw patterns through the second PC.  

Table 8 contains the results from this sort.  Again, parts with extreme PC values had unique patterns 

and parts receiving PC values near the mean shared typical flaw patterns.  Figure 22 displays the 

frequency plots of these parts.  The process of sorting by PC values stopped here since subsequent 

values produced similar results.  This shows the benefit of using PCA.  Instead of having over 1500 

points to analyze for classifying castings, only two variables are needed.  This is a 99.87% reduction 

in data.      
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Table 8:  Results from sorting parts by the second PC value. 

Serial Number PC 2 Value Comments 
#122 -39.29 Unique Flaw Pattern 
#150 14.85 Flaw Pattern 
#148 14.00 Flaw Pattern 
#075 0.05 Typical Flaw Pattern 

                   

 

(a)                                           (b)                                            (c) 

 

Figure 22:  Frequency plot output from parts identified through second principal component value.  Images show 

outputs from # 122 (a), #150/148 (b), and #075 (c).  

 

Up to this point, PCA has been used to group parts by their surface flaw pattern.  The focus now 

switches to identifying what process variables cause each flaw pattern type to occur.  Recall, that the 

PC value contains no real meaning for data analysis.  It cannot be used as a continuous variable in a 

regression analysis for instance.  Instead, it is best to give parts containing similar PC values a 

category name.  The process variables used to make the parts in each category can then be compared 

through ANOVA methods.  This would again require a much larger data set before any robust 

conclusions are made.   
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Chapter 6.  Discussion 

 
This discussion provides an opportunity to examine some of the more important issues related to the 

study.  The first discussion topic explores the impact of grid cell size selection on analysis.  Next, the 

error associated with data entry during the case study is measured and analyzed.  Finally, valuable 

insight gained from implementing the program at a steel casting foundry is presented. 

 
 

6.1 Selecting Grid Cell Size 
Prior to employing many of the analysis modules, users must first specify a grid cell size.  Recall 

from Section 4.2 that grid cells are used to represent specific locations with regards to the casting. 

The size is entered as a single value which defines the length and width of the cell.  For example, a 

cell size value of 2.00 results in a 2.00 x 2.00 cell with an area of 4.00 in2.  Careful consideration 

must be made when selecting a size due the implications it has on the output.   

 

First, grid cell size affects the capability of capturing different sized anomalies for analysis.  A 

smaller cell increases the chances of capturing the location of smaller anomalies.  Figure 23 provides 

an example of this.  Notice when the grid cell size is large, one anomaly is missed.  This is because no 

grid cell midpoint is located inside the anomaly polygon.  When the grid cell size is decreased 

however, both anomalies can be identified.  For identifying anomaly locations, the grid cell size 

should be closely associated to the smallest range of anomalies marked.   

 

          
Figure 23:  Shaded cells are located inside the anomaly.  Left:  Smaller anomaly is missed and anomaly shape is 

crudely defined.  Right:  Smaller cell size results in both anomalies identified, plus better shape definition. 
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The size of the grid cell also affects the area estimate for an anomaly.  Recall that area is 

approximated by counting the number of cells inside an anomaly and multiplying by the cell size.  A 

smaller cell will always come closer to the polygon’s theoretical area.  Proof of this is shown through 

the images provided in Figure 23.  The large polygon in both images has an area of 6.88 in2.  This is 

the nominal area since it was calculated using the polygon’s dimensions.  The estimated area of the 

same polygon using the large cells was 7.00 in2, resulting in a 1.7% approximation error.  The smaller 

cells estimated the area at 6.84 in2 and contained a 0.05% error.  It appears that either cell size does a 

good job of approximating the actual area of the polygon with both containing less than 2% error.  

The use of smaller cells does again result in a better output.    

 

Finally, the cell size determines how well the anomaly shape is represented on the frequency plot 

output.   Grid cells can be compared to pixels used for images.  More pixels results in better 

resolution.  Figure 23 visually shows the effect grid cell size has on the anomaly shape.  The plot 

using large cells provides a very crude representation of the polygon, while the plot using smaller 

cells defines the shape quite well.  To produce the best frequency plot images, grid cell size should be 

set small.   

 

The tradeoff when selecting a small cell size is the increase in computation time.  The graph in Figure 

24 shows an example of computation time vs. grid cell size.  As expected, the graph shows an inverse 

relationship between computation time and cell size.  If time is not a factor when running an analysis, 

cell size can be set extremely small.  A larger size should be chosen in cases where the user wants a 

quicker response.   

 

 

Figure 24:  Graph showing computation time vs. grid cell size. 
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Whether a cell is small or large is all relative to the size of the casting.  A starting point for 

approximating the appropriate cell size is to make it 2% of the smallest casting dimensions. For 

example, if a casting has dimensions of 60” x 48” x 36” the resulting cell size would be around 0.75” 

(0.02 x 36”).           

 

6.2 Data Entry Error 
A reasonable concern regarding the case study is how much error occurred during data entry.  The 

error in question is the result of transferring the data to the software program.  Types of error would 

include incorrectly marking the size, shape, and type of anomaly, as well as missing anomalies all 

together.   

 

An experiment was setup to test the error associated with data entry.  The setup included a single 

operator entering the same data sheet three times into the system.  The operator chosen for this 

experiment had previous experience entering data into the program. To remove bias, the operator was 

unaware of the test and the duplicated data sheets did not appear in sequential order.  The type of 

error measured in this experiment is commonly called repeatability error.  Repeatability error is the 

result of a single operator performing the same task multiple times.   

 

The experiment lasted approximately 50 minutes, allowing the operator to enter data from 6 sheets, 3 

of which were identical.  All data sheets entered contained the same casting model.  This was the 

largest casting and featured many more anomalies when compared to others studied.  It was chosen to 

represent the worst case scenario for data entry error.  The large casting size creates more difficulty in 

consistently locating small anomalies.  While the greater number of anomalies, increases the 

likelihood one will be missed.   

 

Repeatability error was first measured by calculating the number of anomalies marked in each entry.  

Each data entry should contain 33 anomalies as recorded on the duplicated data sheet.  The operator 

achieved this value on two of three data entries.  On the third entry, the operator only recorded 32 

anomalies.  The operator correctly marked 98 out of 99 or 96.97% of anomalies.  The repeatability 

error associated with marking the correct number of anomalies is 3%.  All anomaly types were 

correctly identified. 
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Next, the repeatability error associate with marking the correct anomaly size was measured.  This 

error was calculated by comparing the total anomaly area for each data entry.  The results are shown 

in Figure 25.  The standard deviation was 17.21 with a mean of 192 in2
.  A 7% average variation in 

total anomaly area between data entries implies some amount of repeatability error.  This however 

may have been inflated since Entry 3 did not contain all 33 anomalies.  

  

 
Figure 25:  Histogram showing the total anomaly area for each data entry. 

 

The third aspect investigated was the repeatability error linked to anomaly locations. This measured 

how well the operator marked anomalies in identical locations each time. Frequency plot dated was 

exported to Excel for measuring this error.  In Excel, cell midpoints for representing casting locations 

were categorized by their frequency count (1, 2, or 3).  The total number in each category was then 

used to determine a percent match.  A 100% match refers to cell midpoints which received a 

frequency count of 3, meaning they were inside an anomaly for all three data entries.  A 67% match 

refers to cell midpoints receiving a frequency count 2.  Finally, a 0% match is regarding midpoints 

inside an anomaly in only one data entry.  Ideally, the test would show a 100% match for all 

midpoints.   

 

Results from this analysis are shown in Figure 26.  The operator had a 100% match on 37.41% of the 

total midpoints.  A 67% match on 27.78% of the points and a 0% match on 34.81%.  This would 

suggest there was a significant amount of repeatability error when marking locations.  However, the 

high percentage of midpoints with a frequency count of 1 may be tied to the error associated with 

marking anomaly size and less with regards to marking the correct location.  The grid cell size also 

has a large impact on the repeatability error with regards to location and size.  Smaller cells will be 

more sensitive to minor changes in anomaly location and size between data entries.    
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Figure 26:  Pie chart showing percentage of midpoints and % Match. 

 
A more important measure is how well the frequency plot compared to the original data sheet.  This 

was evaluated in two ways.  First, a visual comparison between the two data formats was completed.  

The comparison resulted in good agreement between anomaly locations.  Next, the number of 

anomaly clusters in the frequency plot was counted.  Anomaly clusters represent regions on the model 

where anomalies were marked multiple times during multiple data entries (Figure 27).  Preferably, 

there should be one anomaly cluster for every one of the 33 anomalies.  If the number of anomaly 

clusters matches the number of anomalies, then the operator did a good job of defining them in 

similar regions each time.  In this test, the operator performed well by creating exactly 33 clusters. 

 

          
Figure 27:  Visual comparison between original data sheet and frequency plot.  Note the number of anomaly clusters 

matches the number of anomalies.  For comparing the other five views, reference Appendix B. 
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The result of this experiment provided two conclusions with regards to data entry.  First, it showed 

that marking anomaly size and location the same way each time is challenging.  This was proven by 

the low 100% match and by the discrepancy between total anomaly areas.  In many ways these results 

were expected since the casting was very large and the anomalies on average were less than 2 in2.  

The grid cell size was also very sensitive to minor changes in position and size.   

 

More importantly, the study proved that data entered into the program was capable of representing the 

original data sheet well.  This can be seen in the comparison provided in Figure 27.  While there was 

some repeatability error associated with the location and size of anomaly markings, the operator only 

created 33 anomaly clusters.  This means that each anomaly was marked in a similar region each 

time.   

 

6.3 Case Study Insights 
This section takes a closer look at the first implementation of the program in the industry.  It will 

discuss potential challenges and provide suggestions for future implementations in other facilities.  

Key insights from case study results will also be discussed.   

 

6.3.1 Case Study Challenges 
The majority of challenges faced when using the software program was limited due to the small scale 

implementation.  The software was setup on a single computer and only that computer had access to 

the database.  The only significant concern with this setup was the location of the data.  Storing it on a 

single computer increases the likelihood of a computer failure losing all the data.  This was prevented 

by consistently backing up the data on an external hard drive.   

 

The other challenge was determining when and where to collect the data.  There were two options to 

consider.  The first option was to collect data on site at each of the inspection stations.  This would 

require setting up the computer at each location and entering data during the inspection.  There were 

multiple concerns with using this method.  First, since the program was installed on a single computer 

the amount of data entered would be limited.  The foundry had six inspection stations spread 

throughout the facility.  Data could only be captured one station at a time.  Second, there were 

concerns with the durability of a laptop computer unprotected in the foundry environment.  Dust, 

vibration, and impact could cause complete failure of the computer.   
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The second option was to bring the data to the computer in the form of data sheets.  These sheets were 

the current method for collecting surface quality data by the foundry.  Multiple operators were trained 

to collect information in this way at many inspection stations simultaneously.  This option was chosen 

over the previous since more data could be entered and the computer was protected.  It does not 

represent the best method for a full implementation of the program.  If more computers were available 

and could be protected inside the foundry, data would have been collected on site.  Entering the data 

on paper and then transferring it to the software program creates non value added waste.  It also 

increases the likelihood for error.    

    

6.3.2 Suggestions for Full Scale Implementation 
The lessons learned during this small scale implementation can be applied to a full scale 

implementation in the future.  A full scale implementation would require a computer at each 

inspection station with networking capability.  The computers would also need a protective case for 

lasting in the foundry environment.  A server for storing the data collected inside the program would 

also be required.  

 

Training for operators entering the data is also necessary.  This was not required during the case study 

since the data was entered by the author.  Basic computer knowledge is all that is necessary for using 

this program.  Therefore, the training should be minimal.  

 

While it would be preferred to collect data on every part produced, this is not feasible in the majority 

of foundries.  Castings with good quality records (based on customer complaints) should have data 

collected on an audit basis.  This will provide data for analysis if something changes with regards to 

the casting’s quality.  The amount of data collected on other castings should be based on the quality 

problems they are experiencing.  If a casting is causing lots of problems, more data should be 

collected.  It is also recommended that data be collected on the same part during multiple inspections.  

This will provide data for foundries to use when analyzing their cleaning room process.  They can 

identify what anomalies are marked on the 2nd or 3rd inspection, as well as how much rework is 

occurring in their system.   

 
6.3.3 Implication of Results 
The results from the case study are very reflective of the foundry chosen.  Harrison Steel is one of the 

top foundries in the industry for data collection and process control.  They collect a significant 

amount of data on every casting produced that is used for problem solving through root causation.  
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Providing them with a software program for collecting and storing the location of anomalies just adds 

to their impressive data set available for analysis.  Harrison’s past dedication to quality prevented the 

software program from identifying quick fixes to their process. 

 

Analysis of this data set did produce some very interesting results. First, it showed there was a 

significant amount of variation between two operators inspecting the same casting.  Secondly, it 

suggested cracks appearing at two locations on the casting were related.  Thirdly, PCA was proven 

effective at grouping castings by their surface flaw pattern.  Unfortunately, no broad conclusions 

could be made.  This was true for other analyses not presented in this paper. 

 

There are many reasons for why conclusions could not be made at this time.  The lack of a sufficient 

data set on anomaly locations was the first reason.  Collecting data on only 50 parts does not provide 

a very large set for analysis.  It does supply enough data for creating accurate frequency plots, but not 

enough for identifying strong relationships in correlations. Secondly, when it came time to analyze 

the data, no resources were readily available at the foundry for conducting experiments.  Experiments 

would be necessary in many cases for validating the relationships identified during analysis.   

 

Casting quality issues take a significant amount of data and time to identify root causation.  

Sometimes it requires data not currently collected.  Even with good data collection methods and 

process control it may still take weeks or months to make any broad conclusions.  The time to pick a 

single casting and fully analyze it using the software program was not available inside this particular 

case study.    Instead, data was collected on a variety of castings for illustrating the types of analysis 

possible from the new software program. 
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Chapter 7.  Conclusions 
 
The software program presented here, along with the new set of analysis modules, provides foundries 

with a much needed tool for controlling their manufacturing process.  Process parameters effect on 

anomaly type, location, and severity can all be calculated.  Relationships between variables can now 

be quantified and used for making appropriate design changes to improve initial part quality.  

Foundries can also gain a greater understanding into their inspection process.  This includes 

identifying variance between inspectors, equipment, and inspection locations.  

 

The development of new analysis tools provides motivation for collecting it on more parts and during 

multiple stages in the cleaning room process.  This promotes a more proactive approach to 

investigating and eliminating surface quality problems.  Collecting information prior to a new 

anomaly occurring also helps with route cause analysis, which may not be achieved otherwise.  For 

example, comparisons can be made to see the effects of the season, pouring temperature, pattern 

number and many other process parameters.  The data is also valuable for validating and improving 

defect simulation software.   

 

Not only will this software program benefit foundries but their customers as well.  Foundries can 

provide customers with information on where the part was welded (weld maps), crack locations, and 

other details.  By supplying management with a new tool for collecting and analyzing inspection data, 

better insight can be gained into the entire steel casting process.  Excessive “rework loops” can be 

analyzed and the true production cost of a casting can be estimated better. 

 
The steel casting industry was the focus for this project; however, the application of the software 

program is not limited to this industry.  Any industry interested in improving quality through tracking 

surface quality data will benefit from the program.  The data input interface and analysis modules are 

capable of collecting and analyzing data related to all types of parts.   
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Chapter 8.  Future Work 
 
Future work on this project will focus on two areas of the software program.  The first focus will be 

on the data input interface.  This could include modifying the interface functions to increase the speed 

of data collection.  Potential work may also involve investigating automated data collection methods 

to reduce the amount human interaction and data entry error.   

 

The second focus is on the development of new data analysis tools and improvements on the current 

set.  The current set of analysis tools are forced to convert the 3D data collected into other formats 

due to limitations inside Adobe.  If these limitations were removed, the analysis tools could be 

modified to directly use the 3D data.  The analysis modules considered for future program versions 

include: 

 

� Gage R&R:  The Gage R&R module would provide foundries with the ability to quantify the 

performance of their inspection process.  It would contain an easy to use interface for setting up 

Gage R&R experiments and calculating the variation.   

 

� Weld Maps: Creating weld maps for a customer is currently available with the program, but has 

not been integrated yet.  Weld maps describe the location on the part where welding occurred.  

Many customers are beginning to require them and this program would provide a great method 

for meeting the customer’s request.   

 

� Cost Calculations: The cost calculation module would take the anomaly area and multiply it by a 

“dollar per inch” rule.  This “dollar per inch” rule is the cost associated for cleaning a particular 

type of anomaly of a certain size.  Other information such as the amount of weld wire could also 

be stored to connect the anomaly type/size to operation cost.  This is a new cost metric for 

management to use in determining project priority and process change results.   
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Appendix A.  Database Diagram 
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Appendix B.  Data Entry Examples 
 

 
Figure 1:  Data collection sheet for casting at Harrison Steel Casting Company. 
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Figure 2:  Frequency plot showing casting surface data transferred from data collection sheet shown in Figure 1. 
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Figure 3:  Data collection sheet duplicated for data entry error study. 
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Figure 4:  Frequency plot output from data entry study. Frequency plot comprised of the three duplicate data sheets. 
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Appendix C.  VB.NET Code 
 

VB.NET Code for Histogram Output 
 
Private Sub Histogram () 
 
Dim CastingNo As String 
Dim VersionNo As String 
Dim i As Integer 
Dim Histo As String 
Dim Value As DataTable 
Dim Value2 As Integer 
 
 
CastingNo = Form1.txtCastingNo.Text 
VersionNo = Form1.txtVersionNo.Text 
 
Chart.ColumnCount = 7 
Chart.RowCount = 1 
         
         For i = 1 To 7 
 
            Chart.Column = i 
            Chart.Row = 1 
            Chart.RowLabel = "Anomaly Type" 
 
            If i = 2 Then 
 
                Chart.ColumnLabel = "Dirt" 
 
            End if 
 
            If i = 3 Then 
 
                Chart.ColumnLabel = "Sand" 
 
            End If 
 
            If i = 4 Then 
 
                Chart.ColumnLabel = "Gas" 
 
            End If 
 
            If i = 5 Then 
 
                Chart.ColumnLabel = "Shrink" 
 
            End If 
 
            If i = 6 Then 
 
                Chart.ColumnLabel = "Rework" 
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            End If 
 
             
 
 

If i = 7 Then 
 
                Chart.ColumnLabel = "Cracks" 
 

End If 
 
 

Histo = "Select Count(AnomalyNo)As cValue From Anom aly Where 
CastingNo='" & CastingNo & "' And VersionNo='" & Ve rsionNo & 
"' And Type='" & i & "'" 

 
Value = aDB.Query(Histo) 

 
            Value2 = Value.Rows(0)("cValue") 
 
            Chart.Data = Value2 
 
        Next i 
 
Form2.Show() 
 
End Sub 
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VB.NET Code for Frequency Plot Calculations 
 

Public Sub Run() 
‘Program functions by evaluating each view of the c asting separately.   
 
For View = 1 To 6 
 

Call CreateGrid() 
 

  Call PointPop() 
 

If Serial.Rows.Count = 0 Then 
 

MessageBox.Show("No parts match the search criteria !", 
"Error", MessageBoxButtons.OK, MessageBoxIcon.Excla mation) 
 

         Exit Sub 
 
           Else 
 

Call Store() 
 

          End If 

Next View 

End Sub 

Public Sub CreateGrid() 

‘Create grid on bounding box surface’ 
Dim rows As Integer 
Dim columns As Integer 
Dim BB As DataTable 
Dim nRow As DataRow 
Dim BBQuery As String 
 
        Grid = New DataTable("Grid Midpoints") 
        Grid.Columns.Add("X", Type.GetType("System. Double")) 
        Grid.Columns.Add("Y", Type.GetType("System. Double")) 
        Grid.Columns.Add("Z", Type.GetType("System. Double")) 
        Grid.Columns.Add("Output", Type.GetType("Sy stem.Double")) 
        Grid.Columns.Add("R", Type.GetType("System. Double")) 
        Grid.Columns.Add("G", Type.GetType("System. Double")) 
        Grid.Columns.Add("B", Type.GetType("System. Double")) 
        Grid.Columns.Add("ViewNo", Type.GetType("Sy stem.Double")) 
 

BBQuery = "Select MaxX,MaxY,MaxZ,MinX,MinY,MinZ Fro m BoundingBox 
Where " & "CastingNo='" & CastingNo & "' And Versio nNo='" & 
VersionNo &"'" 

 
        BB = aDB.Query(BBQuery) 
 
        If BB.Rows.Count = 0 Then 
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            Exit Sub 
 
        End If 
 
'The bounding box is partitioned into a grid based on what view you want. 
 
        If View = 1 Or View = 2 Then 
 

  Dim Width As Double = Abs(BB.Rows(0)("MaxX") - BB .Rows(0)("MinX")) 
  Dim Height As Double = Abs(BB.Rows(0)("MaxZ")- BB .Rows(0)("MinZ")) 

 
        rows = Height / GridSize 
        columns = Width / GridSize 
 
            For j = 0 To rows - 1 
 
                For i = 0 To columns - 1 
 
                    x1 = BB.Rows(0)("MinX") + (i* ( Width / columns)) 
                    x2 = BB.Rows(0)("MinX") + ((i +  1)* (Width / columns)) 
 
                    z1 = BB.Rows(0)("MinZ") + (j * (Height / rows)) 
                    z2 = BB.Rows(0)("MinZ") + ((j +  1) * (Height / rows)) 
 
 
                    Dim midpointX As Double = ((x2 - x1) / 2) + x1 
                    Dim midpointZ As Double = ((z2 - z1) / 2) + z1 
 
 
                    nRow = Grid.NewRow 
                    nRow("X") = midpointX 
 
                    If View = 1 Then 
 
                        nRow("Y") = BB.Rows(0)("Min Y") 
 
                    Else 
 
                        nRow("Y") = BB.Rows(0)("Max Y") 
 
                    End If 
 
                    nRow("Z") = midpointZ 
                    nRow("ViewNo") = View 
                    Grid.Rows.Add(nRow) 
 
                Next i 
 
            Next j 
 
        End If 
 
    End Sub 
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‘Similar code is used for views 3-6 

Private Sub PointPop() 

SerialQuery = "Select Distinct SerialNo From Inspec tion Where CastingNo='" 
& CastingNo & "' And VersionNo='" & VersionNo & "'A nd InspectionNo=" & 
InspectionNo & "" 
 
Serial = aDB.Query(SerialQuery) 
 
   If Serial.Rows.Count = 0 Then 
 
      Exit Sub 
 
   End If 
 
'For loop which cycles through each serial number i n the data table 
 

For s = 0 To Serial.Rows.Count - 1 
 

QueryMax = "Select * From Anomaly Where CastingNo=' " & CastingNo & 
"' And VersionNo='" & VersionNo & "' And " & "Inspe ctionNo=" & 
InspectionNo & " And SerialNo='" & Serial.Rows(s)(" SerialNo") & "' 
And ViewNo=" & View 

 
'Stores max anomaly number for specific serial numb er into datatable 
 
            MaxAnomaly = aDB.Query(QueryMax) 
 
If MaxAnomaly.Rows.Count > 0 Then 
 

For k = 0 To MaxAnomaly.Rows.Count - 1 
 
 

PointQuery = "Select Point.X,Point.Y,Point.Z " & " From Point 
" & " Where CastingNo='" & CastingNo & "' And Versi onNo='" & 
VersionNo & "' And AnomalyNo=" MaxAnomaly.Rows(k)(" AnomalyNo") 
& " And " & " InspectionNo=" & InspectionNo & " And  
SerialNo='" & Serial.Rows(s)("SerialNo") & "'" 

 
 
 
         PolyPts = aDB.Query(PointQuery) 
 
                    If View = 1 Or View = 2 Then 
 
                        For j = 0 To Grid.Rows.Coun t - 1 
 
                            value = False 
 
                            For i = 0 To PolyPts.Ro ws.Count - 1 
 
                                x1 = PolyPts.Rows(0  + i)("X") 
                                z1 = PolyPts.Rows(0  + i)("Z") 
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                                If i < PolyPts.Rows .Count - 1 Then 
 
                                    x2 = PolyPts.Ro ws(i + 1)("X") 
                                    z2 = PolyPts.Ro ws(i + 1)("Z") 
 
                                Else 
 
                                    x2 = PolyPts.Ro ws(0)("X") 
                                    z2 = PolyPts.Ro ws(0)("Z") 
 
                                End If 
 

If (z1 < Grid.Rows(0 + j)("Z") And 
Grid.Rows(0 + j)("Z") <= z2) Or 
(Grid.Rows(0 + j)("Z") <= z1 And z2 < 
Grid.Rows(0 + j)("Z")) Then 

     (O’Rourke,1998) 
If ((Grid.Rows(0 + j)("X") - x1) - 
(Grid.Rows(0 + j)("Z") - z1) * ((x2 - 
x1) / (z2 - z1)) < 0) Then 

  
                                    value = Not val ue 
 
 
                                End If 
 
                                End If 
 
                            Next i 
 
                            If value = True Then 
 
                                cell = Grid.Rows(j) ("Output") 
 
                                cell2 = cell + 1 
 
                                Grid.Rows(j)("Outpu t") = cell2 
 
                            End If 
 
                        Next j 
 
                    End If 
 
            Next k 
 

End If 
 

 Next s 
 
End Sub 

‘Similar code is used for views 3-6 
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Private Sub Store() 
 
Dim Insert As String 
 
        For i = 0 To Grid.Rows.Count - 1 
 
            If Grid.Rows(i)("Output") > 0 Then 
 

Insert = "Insert INTO Grid(X,Y,Z,Freq,ViewNo)Values (" & 
Grid.Rows(i)("X") & ", " & Grid.Rows(i)("Y") & "," & 
Grid.Rows(i)("Z") & "," & Grid.Rows(i)("Output") & "," & 
Grid.Rows(i)("ViewNo") & ")" 
 

                aDB.Insert(Insert) 
 
            End If 
 
        Next i 
 
End Sub 
 
 
Public Sub Color() 
 
Dim MaxOutput As DataTable 
 
MaxOutput = aDB.Query("Select Max(Freq)As cMax, Min (Freq) As cMin From 
Grid") 
 

aDB.Update("Update Grid Set R = 0,G=0,B=1 Where Fre q >= " & 
MaxOutput.Rows(0)("cMin") & " And  Freq< " & 0.2 * 
MaxOutput.Rows(0)("cMax")) 

 
aDB.Update("Update Grid Set R = 0,G=1,B=0 Where Fre q >= " & 0.2 * 
MaxOutput.Rows(0)("cMax") & " And Freq< " & 0.4 * 
MaxOutput.Rows(0)("cMax")) 

 
aDB.Update("Update Grid Set R = 1,G=1,B=0 Where  Fr eq >= " & 0.4 * 
MaxOutput.Rows(0)("cMax") & " And Freq< " & 0.6 * 
MaxOutput.Rows(0)("cMax")) 

 
aDB.Update("Update Grid Set R = 1,G=0.554,B=0 Where   Freq >= " & 0.6 
* MaxOutput.Rows(0)("cMax") & " And Freq< " & 0.8 *  
MaxOutput.Rows(0)("cMax")) 

 
aDB.Update("Update Grid Set R = 1,G=0,B=0 Where Fre q >= " & 0.8 * 
MaxOutput.Rows(0)("cMax") & " And Freq<= " & 
MaxOutput.Rows(0)("cMax")) 

 
End Sub 
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Public Sub averagenum() 
 
Dim Count As Integer 
Dim temp As DataTable 
Dim temp2 As DataTable 
Dim total As Integer 
Dim total2 As Integer 
 
        temp2 = New DataTable("Anomaly Count") 
        temp2.Columns.Add("AnomalyCount", Type.GetT ype("System.Double")) 
 
 
            For i = 0 To Serial.Rows.Count – 1 
 

Dim MaxAnomaly As String = "Select Count(AnomalyNo) As cValue 
From Anomaly Where CastingNo='" & CastingNo & "' An d 
VersionNo='" & VersionNo & "' And " & "InspectionNo =" & 
InspectionNo & " AND SerialNo='" & Serial.Rows(i)(" SerialNo") & 
"'" 

 
                temp = aDB.Query(MaxAnomaly) 
 
                total = temp.Rows(0)("cValue") 
                Dim newRow As DataRow 
                newRow = temp2.NewRow 
                newRow("AnomalyCount") = total 
                temp2.Rows.Add(newRow) 
 
            Next i 
 
        
Dim Value As Integer 
 

  total = 0 
        total2 = 0 
 
        For i = 0 To temp2.Rows.Count – 1 
 
            total2 = temp2.Rows(i)("AnomalyCount") 
            Value = total + total2 
            total = Value 
 
        Next i 
 
        Count = Serial.Rows.Count 
 
        Dim result As Integer 
 
        result = Value / Count 
 
        TextBox2.Text="The Average Number of Anomal ies per Part ="& result 
 
End Sub 
 
 



www.manaraa.com

56 
 

 

Public Sub averagearea() 
 
Dim Count As Double 
Dim Sum As DataTable 
 
Count = Serial.Rows.Count 
 
Sum = aDB.Query("Select Sum(Freq) As cValue From Gr id ") 
 
Dim Sum2 As Double = Sum.Rows(0)("cValue") 
 
Dim AverageLengthin As Integer = (Sum2 * 0.00155 * (GridSize ^ 2))/(Count) 
 
TextBox1.Text = "The Average Anomaly Area per Part = " & AverageLengthin & 
" in^2 " 
 
 
End Sub 

 

*The correlation modules all involve variations of the code provided here. 
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